TU Darmstadt / ULB / TUbiblio

Analysis of Schedule and Layout Tuning for Sparse Matrices With Compound Entries on GPUs

Mueller-Roemer, J. S. ; Stork, A. ; Fellner, D. (2020)
Analysis of Schedule and Layout Tuning for Sparse Matrices With Compound Entries on GPUs.
In: Computer Graphics Forum, 39 (6)
doi: 10.1111/cgf.13957
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Large sparse matrices with compound entries, i.e. complex and quaternionic matrices as well as matrices with dense blocks, are a core component of many algorithms in geometry processing, physically based animation and other areas of computer graphics. We generalize several matrix layouts and apply joint schedule and layout autotuning to improve the performance of the sparse matrix-vector product on massively parallel graphics processing units. Compared to schedule tuning without layout tuning, we achieve speedups of up to 5.5×. In comparison to cuSPARSE, we achieve speedups of up to 4.7×.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Mueller-Roemer, J. S. ; Stork, A. ; Fellner, D.
Art des Eintrags: Bibliographie
Titel: Analysis of Schedule and Layout Tuning for Sparse Matrices With Compound Entries on GPUs
Sprache: Englisch
Publikationsjahr: 1 September 2020
Verlag: Wiley & Sons Ltd.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computer Graphics Forum
Jahrgang/Volume einer Zeitschrift: 39
(Heft-)Nummer: 6
DOI: 10.1111/cgf.13957
Kurzbeschreibung (Abstract):

Large sparse matrices with compound entries, i.e. complex and quaternionic matrices as well as matrices with dense blocks, are a core component of many algorithms in geometry processing, physically based animation and other areas of computer graphics. We generalize several matrix layouts and apply joint schedule and layout autotuning to improve the performance of the sparse matrix-vector product on massively parallel graphics processing units. Compared to schedule tuning without layout tuning, we achieve speedups of up to 5.5×. In comparison to cuSPARSE, we achieve speedups of up to 4.7×.

Freie Schlagworte: General Purpose Computation on Graphics Processing Unit (GPGPU), Parallel computing, Matrix operations
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 07 Mai 2020 09:47
Letzte Änderung: 04 Feb 2022 12:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen