TU Darmstadt / ULB / TUbiblio

Identification of lack of knowledge using analytical redundancy applied to structural dynamic systems

Hartig, Jakob ; Hoppe, Florian ; Martin, Daniel ; Staudter, Georg ; Öztürk, Tuğrul ; Anderl, Reiner ; Groche, Peter ; Pelz, P. F. ; Weigold, Matthias
Hrsg.: Mao, Zhu (2020)
Identification of lack of knowledge using analytical redundancy applied to structural dynamic systems.
Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020.
doi: 10.1007/978-3-030-47638-0_14
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Reliability of sensor information in today’s highly automated systems is crucial. Neglected and not quantifiable uncertainties lead to lack of knowledge which results in erroneous interpretation of sensor data. Physical redundancy is an often-used approach to reduce the impact of lack of knowledge but in many cases is infeasible and gives no absolute certainty about which sensors and models to trust. However, structural models can link spatially distributed sensors to create analytical redundancy. By using existing sensor data and models, analytical redundancy comes with the benefits of unchanged structural behavior and cost efficiency. The detection of conflicting data using analytical redundancy reveals lack of knowledge, e.g. in sensors or models, and supports the inference from conflict to cause. We present an approach to enforce analytical redundancy by using an information model of the technical system formalizing sensors, physical models and the corresponding uncertainty in a unified framework. This allows for continuous validation of models and the verification of sensor data. This approach is applied to a structural dynamic system with various sensors based on an aircraft landing gear system.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Herausgeber: Mao, Zhu
Autor(en): Hartig, Jakob ; Hoppe, Florian ; Martin, Daniel ; Staudter, Georg ; Öztürk, Tuğrul ; Anderl, Reiner ; Groche, Peter ; Pelz, P. F. ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Identification of lack of knowledge using analytical redundancy applied to structural dynamic systems
Sprache: Englisch
Publikationsjahr: 28 Oktober 2020
Ort: Cham
Verlag: Springer International Publishing
Buchtitel: Model Validation and Uncertainty Quantification ; Vol. 3
Reihe: Conference Proceedings of the Society for Experimental Mechanics Series
Veranstaltungstitel: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020
DOI: 10.1007/978-3-030-47638-0_14
URL / URN: https://link.springer.com/book/10.1007%2F978-3-030-47638-0
Kurzbeschreibung (Abstract):

Reliability of sensor information in today’s highly automated systems is crucial. Neglected and not quantifiable uncertainties lead to lack of knowledge which results in erroneous interpretation of sensor data. Physical redundancy is an often-used approach to reduce the impact of lack of knowledge but in many cases is infeasible and gives no absolute certainty about which sensors and models to trust. However, structural models can link spatially distributed sensors to create analytical redundancy. By using existing sensor data and models, analytical redundancy comes with the benefits of unchanged structural behavior and cost efficiency. The detection of conflicting data using analytical redundancy reveals lack of knowledge, e.g. in sensors or models, and supports the inference from conflict to cause. We present an approach to enforce analytical redundancy by using an information model of the technical system formalizing sensors, physical models and the corresponding uncertainty in a unified framework. This allows for continuous validation of models and the verification of sensor data. This approach is applied to a structural dynamic system with various sensors based on an aircraft landing gear system.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Fluidsystemtechnik (FST) (seit 01.10.2006)
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Werkzeugmaschinen und Komponenten (2021 aufgegangen in TEC Fertigungstechnologie)
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 805: Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus
Hinterlegungsdatum: 15 Apr 2020 05:14
Letzte Änderung: 29 Mär 2022 09:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen