Hartig, Jakob ; Hoppe, Florian ; Martin, Daniel ; Staudter, Georg ; Öztürk, Tuğrul ; Anderl, Reiner ; Groche, Peter ; Pelz, P. F. ; Weigold, Matthias
Hrsg.: Mao, Zhu (2020)
Identification of lack of knowledge using analytical redundancy applied to structural dynamic systems.
Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020.
doi: 10.1007/978-3-030-47638-0_14
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Reliability of sensor information in today’s highly automated systems is crucial. Neglected and not quantifiable uncertainties lead to lack of knowledge which results in erroneous interpretation of sensor data. Physical redundancy is an often-used approach to reduce the impact of lack of knowledge but in many cases is infeasible and gives no absolute certainty about which sensors and models to trust. However, structural models can link spatially distributed sensors to create analytical redundancy. By using existing sensor data and models, analytical redundancy comes with the benefits of unchanged structural behavior and cost efficiency. The detection of conflicting data using analytical redundancy reveals lack of knowledge, e.g. in sensors or models, and supports the inference from conflict to cause. We present an approach to enforce analytical redundancy by using an information model of the technical system formalizing sensors, physical models and the corresponding uncertainty in a unified framework. This allows for continuous validation of models and the verification of sensor data. This approach is applied to a structural dynamic system with various sensors based on an aircraft landing gear system.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2020 |
Herausgeber: | Mao, Zhu |
Autor(en): | Hartig, Jakob ; Hoppe, Florian ; Martin, Daniel ; Staudter, Georg ; Öztürk, Tuğrul ; Anderl, Reiner ; Groche, Peter ; Pelz, P. F. ; Weigold, Matthias |
Art des Eintrags: | Bibliographie |
Titel: | Identification of lack of knowledge using analytical redundancy applied to structural dynamic systems |
Sprache: | Englisch |
Publikationsjahr: | 28 Oktober 2020 |
Ort: | Cham |
Verlag: | Springer International Publishing |
Buchtitel: | Model Validation and Uncertainty Quantification ; Vol. 3 |
Reihe: | Conference Proceedings of the Society for Experimental Mechanics Series |
Veranstaltungstitel: | Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020 |
DOI: | 10.1007/978-3-030-47638-0_14 |
URL / URN: | https://link.springer.com/book/10.1007%2F978-3-030-47638-0 |
Kurzbeschreibung (Abstract): | Reliability of sensor information in today’s highly automated systems is crucial. Neglected and not quantifiable uncertainties lead to lack of knowledge which results in erroneous interpretation of sensor data. Physical redundancy is an often-used approach to reduce the impact of lack of knowledge but in many cases is infeasible and gives no absolute certainty about which sensors and models to trust. However, structural models can link spatially distributed sensors to create analytical redundancy. By using existing sensor data and models, analytical redundancy comes with the benefits of unchanged structural behavior and cost efficiency. The detection of conflicting data using analytical redundancy reveals lack of knowledge, e.g. in sensors or models, and supports the inference from conflict to cause. We present an approach to enforce analytical redundancy by using an information model of the technical system formalizing sensors, physical models and the corresponding uncertainty in a unified framework. This allows for continuous validation of models and the verification of sensor data. This approach is applied to a structural dynamic system with various sensors based on an aircraft landing gear system. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Fluidsystemtechnik (FST) (seit 01.10.2006) 16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU) 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Werkzeugmaschinen und Komponenten (2021 aufgegangen in TEC Fertigungstechnologie) DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 805: Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus |
Hinterlegungsdatum: | 15 Apr 2020 05:14 |
Letzte Änderung: | 29 Mär 2022 09:40 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |