TU Darmstadt / ULB / TUbiblio

Fracture toughness determination of fused silica by cube corner indentation cracking and pillar splitting

Bruns, Sebastian ; Petho, Laszlo ; Minnert, Christian ; Michler, Johann ; Durst, Karsten (2020)
Fracture toughness determination of fused silica by cube corner indentation cracking and pillar splitting.
In: Materials & Design, 2020, 186
doi: 10.25534/tuprints-00011386
Artikel, Zweitveröffentlichung

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this paper the applicability of the pillar splitting technique for fracture toughness determination on anomalous behaving bulk fused silica glass is explored. The results are compared to conventional cube corner indentation cracking analyzed using the Lawn, Evans and Marshall model (JACerS, 63 (1980) 574). The experimental analysis is supported by constitutive Finite Element Analysis with cohesive zones to determine adequate gauge factors to correlate the load instability upon splitting to the fracture toughness Kc. The role of densification on pillar splitting was critically examined. The results show a fragmentation of the micro pillar into three parts, a failure pattern as proposed by Sebastiani et al. (Philos. Mag., 95 (2014) 1928). Therefore, the applicability of pillar splitting to (anomalous) glasses is confirmed. Cohesive zone FEA delivered the gauge factors required for fracture toughness calculation. The influence of densification on those factors, however, was found to be small for indentation cracking and negligible for pillar splitting. With the corresponding set of gauge factors fracture toughness values in good accordance with literature could be determined. Inside the SEM, moreover, electron beam irradiation has been found to enhance the fracture properties of fused silica.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Bruns, Sebastian ; Petho, Laszlo ; Minnert, Christian ; Michler, Johann ; Durst, Karsten
Art des Eintrags: Zweitveröffentlichung
Titel: Fracture toughness determination of fused silica by cube corner indentation cracking and pillar splitting
Sprache: Englisch
Publikationsjahr: 2020
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials & Design
Jahrgang/Volume einer Zeitschrift: 186
DOI: 10.25534/tuprints-00011386
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

In this paper the applicability of the pillar splitting technique for fracture toughness determination on anomalous behaving bulk fused silica glass is explored. The results are compared to conventional cube corner indentation cracking analyzed using the Lawn, Evans and Marshall model (JACerS, 63 (1980) 574). The experimental analysis is supported by constitutive Finite Element Analysis with cohesive zones to determine adequate gauge factors to correlate the load instability upon splitting to the fracture toughness Kc. The role of densification on pillar splitting was critically examined. The results show a fragmentation of the micro pillar into three parts, a failure pattern as proposed by Sebastiani et al. (Philos. Mag., 95 (2014) 1928). Therefore, the applicability of pillar splitting to (anomalous) glasses is confirmed. Cohesive zone FEA delivered the gauge factors required for fracture toughness calculation. The influence of densification on those factors, however, was found to be small for indentation cracking and negligible for pillar splitting. With the corresponding set of gauge factors fracture toughness values in good accordance with literature could be determined. Inside the SEM, moreover, electron beam irradiation has been found to enhance the fracture properties of fused silica.

URN: urn:nbn:de:tuda-tuprints-113866
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 26 Jan 2020 20:58
Letzte Änderung: 09 Jul 2024 08:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen