Solis Vasquez, Leonardo (2019)
Accelerating Molecular Docking by Parallelized Heterogeneous Computing - A Case Study of Performance, Quality of Results, and Energy-Efficiency using CPUs, GPUs, and FPGAs.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00009288
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Molecular Docking (MD) is a key tool in computer-aided drug design that aims to predict the binding pose between a small molecule and a macromolecular target. At its core, MD calculates the strength of possible binding poses, and searches for the energetically-stronger ones among those generated during simulation. Automatic Docking (AutoDock) is a widely-used MD code that employs a physics-based scoring function to quantify the binding strength. AutoDock also uses a Lamarckian Genetic Algorithm (LGA), and in turn, the Solis-Wets method, as a local-search algorithm, in order to find strong interactions of such molecular systems. Due to the highly-parallel nature of the LGA tasks involved, AutoDock can benefit from runtime acceleration based on parallelization.
This thesis presents an OpenCL-based parallelization of AutoDock, and a corresponding evaluation in terms of execution performance, quality-of-results, and compute-energy efficiency, achieved on different platforms based on: multi-core Central Processing Unit (CPU)s, Graphics Processing Unit (GPU)s, and Field Programmable Gate Array (FPGA)s. While a data-parallel approach has proven its effectiveness in accelerating AutoDock on CPUs and GPUs, it was observed that for FPGAs, such approach resulted in slower executions in the range of three-orders of magnitude when compared against the original single-threaded AutoDock. To overcome this drawback, a task-parallel implementation for FPGAs is discussed as well.
Besides presenting an AutoDock implementation being parallelized using OpenCL, this thesis also extends the LGA search with new alternative local-search methods based on gradients (of the scoring function) such as: Steepest-Descent, FIRE, and ADADELTA. Among these, it was found that ADADELTA provides significant algorithmic benefits over Solis-Wets, yielding a reduction in calculation effort down to 1/1300 of the legacy Solis-Wets method, while achieving equivalent quality-of-results. Compared to the original single-threaded AutoDock, the proposed data-parallel design achieves a speedup of up to ∼399x and improves the compute-energy efficiency by up to ∼297x when running on modern V100 GPUs. Furthermore, this thesis describes the adaptations performed on the proposed OpenCL-based implementation for supporting challenging real-world MD scenarios.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2019 | ||||
Autor(en): | Solis Vasquez, Leonardo | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Accelerating Molecular Docking by Parallelized Heterogeneous Computing - A Case Study of Performance, Quality of Results, and Energy-Efficiency using CPUs, GPUs, and FPGAs | ||||
Sprache: | Englisch | ||||
Referenten: | Koch, Prof. Dr. Andreas ; Plessl, Prof. Dr. Christian | ||||
Publikationsjahr: | 30 November 2019 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 14 Oktober 2019 | ||||
DOI: | 10.25534/tuprints-00009288 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/9288 | ||||
Kurzbeschreibung (Abstract): | Molecular Docking (MD) is a key tool in computer-aided drug design that aims to predict the binding pose between a small molecule and a macromolecular target. At its core, MD calculates the strength of possible binding poses, and searches for the energetically-stronger ones among those generated during simulation. Automatic Docking (AutoDock) is a widely-used MD code that employs a physics-based scoring function to quantify the binding strength. AutoDock also uses a Lamarckian Genetic Algorithm (LGA), and in turn, the Solis-Wets method, as a local-search algorithm, in order to find strong interactions of such molecular systems. Due to the highly-parallel nature of the LGA tasks involved, AutoDock can benefit from runtime acceleration based on parallelization. This thesis presents an OpenCL-based parallelization of AutoDock, and a corresponding evaluation in terms of execution performance, quality-of-results, and compute-energy efficiency, achieved on different platforms based on: multi-core Central Processing Unit (CPU)s, Graphics Processing Unit (GPU)s, and Field Programmable Gate Array (FPGA)s. While a data-parallel approach has proven its effectiveness in accelerating AutoDock on CPUs and GPUs, it was observed that for FPGAs, such approach resulted in slower executions in the range of three-orders of magnitude when compared against the original single-threaded AutoDock. To overcome this drawback, a task-parallel implementation for FPGAs is discussed as well. Besides presenting an AutoDock implementation being parallelized using OpenCL, this thesis also extends the LGA search with new alternative local-search methods based on gradients (of the scoring function) such as: Steepest-Descent, FIRE, and ADADELTA. Among these, it was found that ADADELTA provides significant algorithmic benefits over Solis-Wets, yielding a reduction in calculation effort down to 1/1300 of the legacy Solis-Wets method, while achieving equivalent quality-of-results. Compared to the original single-threaded AutoDock, the proposed data-parallel design achieves a speedup of up to ∼399x and improves the compute-energy efficiency by up to ∼297x when running on modern V100 GPUs. Furthermore, this thesis describes the adaptations performed on the proposed OpenCL-based implementation for supporting challenging real-world MD scenarios. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-92886 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 540 Chemie 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
||||
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Eingebettete Systeme und ihre Anwendungen |
||||
Hinterlegungsdatum: | 08 Dez 2019 20:55 | ||||
Letzte Änderung: | 08 Dez 2019 20:55 | ||||
PPN: | |||||
Referenten: | Koch, Prof. Dr. Andreas ; Plessl, Prof. Dr. Christian | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 14 Oktober 2019 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |