TU Darmstadt / ULB / TUbiblio

Entropic Regularization of Markov Decision Processes

Belousov, Boris ; Peters, Jan (2019)
Entropic Regularization of Markov Decision Processes.
In: Entropy, 2019, 21 (7)
Artikel, Zweitveröffentlichung

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

An optimal feedback controller for a given Markov decision process (MDP) can in principle be synthesized by value or policy iteration. However, if the system dynamics and the reward function are unknown, a learning agent must discover an optimal controller via direct interaction with the environment. Such interactive data gathering commonly leads to divergence towards dangerous or uninformative regions of the state space unless additional regularization measures are taken. Prior works proposed bounding the information loss measured by the Kullback–Leibler (KL) divergence at every policy improvement step to eliminate instability in the learning dynamics. In this paper, we consider a broader family of f-divergences, and more concretely α-divergences, which inherit the beneficial property of providing the policy improvement step in closed form at the same time yielding a corresponding dual objective for policy evaluation. Such entropic proximal policy optimization view gives a unified perspective on compatible actor-critic architectures. In particular, common least-squares value function estimation coupled with advantage-weighted maximum likelihood policy improvement is shown to correspond to the Pearson χ 2 -divergence penalty. Other actor-critic pairs arise for various choices of the penalty-generating function f. On a concrete instantiation of our framework with the α-divergence, we carry out asymptotic analysis of the solutions for different values of α and demonstrate the effects of the divergence function choice on common standard reinforcement learning problems.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Belousov, Boris ; Peters, Jan
Art des Eintrags: Zweitveröffentlichung
Titel: Entropic Regularization of Markov Decision Processes
Sprache: Englisch
Publikationsjahr: 2019
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Entropy
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 7
URL / URN: urn:nbn:de:tuda-tuprints-92409
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

An optimal feedback controller for a given Markov decision process (MDP) can in principle be synthesized by value or policy iteration. However, if the system dynamics and the reward function are unknown, a learning agent must discover an optimal controller via direct interaction with the environment. Such interactive data gathering commonly leads to divergence towards dangerous or uninformative regions of the state space unless additional regularization measures are taken. Prior works proposed bounding the information loss measured by the Kullback–Leibler (KL) divergence at every policy improvement step to eliminate instability in the learning dynamics. In this paper, we consider a broader family of f-divergences, and more concretely α-divergences, which inherit the beneficial property of providing the policy improvement step in closed form at the same time yielding a corresponding dual objective for policy evaluation. Such entropic proximal policy optimization view gives a unified perspective on compatible actor-critic architectures. In particular, common least-squares value function estimation coupled with advantage-weighted maximum likelihood policy improvement is shown to correspond to the Pearson χ 2 -divergence penalty. Other actor-critic pairs arise for various choices of the penalty-generating function f. On a concrete instantiation of our framework with the α-divergence, we carry out asymptotic analysis of the solutions for different values of α and demonstrate the effects of the divergence function choice on common standard reinforcement learning problems.

URN: urn:nbn:de:tuda-tuprints-92409
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
Hinterlegungsdatum: 03 Nov 2019 20:57
Letzte Änderung: 06 Dez 2023 07:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen