TU Darmstadt / ULB / TUbiblio

Classification and Clustering of Arguments with Contextualized Word Embeddings

Reimers, Nils ; Schiller, Benjamin ; Beck, Tilman ; Daxenberger, Johannes ; Stab, Christian ; Gurevych, Iryna (2019)
Classification and Clustering of Arguments with Contextualized Word Embeddings.
57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Florence, Italy (28.07.2019-02.08.2019)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We experiment with two recent contextualized word embedding methods (ELMo and BERT) in the context of open-domain argument search. For the first time, we show how to leverage the power of contextualized word embeddings to classify and cluster topic-dependent arguments, achieving impressive results on both tasks and across multiple datasets. For argument classification, we improve the state-of-the-art for the UKP Sentential Argument Mining Corpus by 20.8 percentage points and for the IBM Debater - Evidence Sentences dataset by 7.4 percentage points. For the understudied task of argument clustering, we propose a pre-training step which improves by 7.8 percentage points over strong baselines on a novel dataset, and by 12.3 percentage points for the Argument Facet Similarity (AFS) Corpus.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Reimers, Nils ; Schiller, Benjamin ; Beck, Tilman ; Daxenberger, Johannes ; Stab, Christian ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Classification and Clustering of Arguments with Contextualized Word Embeddings
Sprache: Englisch
Publikationsjahr: 27 Mai 2019
Verlag: ACL
Buchtitel: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)
Veranstaltungstitel: 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)
Veranstaltungsort: Florence, Italy
Veranstaltungsdatum: 28.07.2019-02.08.2019
URL / URN: https://www.aclweb.org/anthology/P19-1054
Zugehörige Links:
Kurzbeschreibung (Abstract):

We experiment with two recent contextualized word embedding methods (ELMo and BERT) in the context of open-domain argument search. For the first time, we show how to leverage the power of contextualized word embeddings to classify and cluster topic-dependent arguments, achieving impressive results on both tasks and across multiple datasets. For argument classification, we improve the state-of-the-art for the UKP Sentential Argument Mining Corpus by 20.8 percentage points and for the IBM Debater - Evidence Sentences dataset by 7.4 percentage points. For the understudied task of argument clustering, we propose a pre-training step which improves by 7.8 percentage points over strong baselines on a novel dataset, and by 12.3 percentage points for the Argument Facet Similarity (AFS) Corpus.

Freie Schlagworte: UKP_p_OAM
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 30 Okt 2019 13:55
Letzte Änderung: 16 Jul 2021 10:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen