TU Darmstadt / ULB / TUbiblio

A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity based shock‐capturing on cut cells

Geisenhofer, Markus ; Kummer, Florian ; Müller, Björn (2019)
A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity based shock‐capturing on cut cells.
In: International Journal for Numerical Methods in Fluids, 91
doi: 10.1002/fld.4761
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We present a higher order cut cell immersed boundary method (IBM) for the simulation of high Mach number flows. As a novelty on a cut cell grid, we evaluate an adaptive local time stepping (LTS) scheme in combination with an artificial viscosity based shock‐capturing approach. The cut cell grid is optimized by a non‐intrusive cell‐agglomeration strategy in order to avoid problems with small or ill‐shaped cut cells. Our approach is based on a discontinuous Galerkin discretization of the compressible Euler equations, where the immersed boundary is implicitly defined by the zero iso‐contour of a level set function. In flow configurations with high Mach numbers, a numerical shock‐capturing mechanism is crucial in order to prevent unphysical oscillations of the polynomial approximation in the vicinity of shocks. We achieve this by means of a viscous smoothing where the artificial viscosity follows from a modal decay sensor that has been adapted to the IBM. The problem of the severe time step restriction caused by the additional second order diffusive term and small non‐agglomerated cut cells is addressed by using an adaptive LTS algorithm. The robustness, stability, and accuracy of our approach is verified for several common test cases. Moreover, the results show that our approach lowers the computational costs drastically, especially for unsteady IBM problems with complex geometries.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Geisenhofer, Markus ; Kummer, Florian ; Müller, Björn
Art des Eintrags: Bibliographie
Titel: A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity based shock‐capturing on cut cells
Sprache: Englisch
Publikationsjahr: 19 Juli 2019
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal for Numerical Methods in Fluids
Jahrgang/Volume einer Zeitschrift: 91
DOI: 10.1002/fld.4761
Zugehörige Links:
Kurzbeschreibung (Abstract):

We present a higher order cut cell immersed boundary method (IBM) for the simulation of high Mach number flows. As a novelty on a cut cell grid, we evaluate an adaptive local time stepping (LTS) scheme in combination with an artificial viscosity based shock‐capturing approach. The cut cell grid is optimized by a non‐intrusive cell‐agglomeration strategy in order to avoid problems with small or ill‐shaped cut cells. Our approach is based on a discontinuous Galerkin discretization of the compressible Euler equations, where the immersed boundary is implicitly defined by the zero iso‐contour of a level set function. In flow configurations with high Mach numbers, a numerical shock‐capturing mechanism is crucial in order to prevent unphysical oscillations of the polynomial approximation in the vicinity of shocks. We achieve this by means of a viscous smoothing where the artificial viscosity follows from a modal decay sensor that has been adapted to the IBM. The problem of the severe time step restriction caused by the additional second order diffusive term and small non‐agglomerated cut cells is addressed by using an adaptive LTS algorithm. The robustness, stability, and accuracy of our approach is verified for several common test cases. Moreover, the results show that our approach lowers the computational costs drastically, especially for unsteady IBM problems with complex geometries.

Freie Schlagworte: BoSSS
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy)
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 18 Okt 2019 07:22
Letzte Änderung: 10 Jan 2024 09:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen