TU Darmstadt / ULB / TUbiblio

A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity-based shock‐capturing on cut cells

Geisenhofer, Markus ; Kummer, Florian ; Müller, Björn (2024)
A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity-based shock‐capturing on cut cells.
In: International Journal for Numerical Methods in Fluids, 2019, 91 (9)
doi: 10.26083/tuprints-00015956
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We present a higher‐order cut cell immersed boundary method (IBM) for the simulation of high Mach number flows. As a novelty on a cut cell grid, we evaluate an adaptive local time stepping (LTS) scheme in combination with an artificial viscosity–based shock‐capturing approach. The cut cell grid is optimized by a nonintrusive cell agglomeration strategy in order to avoid problems with small or ill‐shaped cut cells. Our approach is based on a discontinuous Galerkin discretization of the compressible Euler equations, where the immersed boundary is implicitly defined by the zero isocontour of a level set function. In flow configurations with high Mach numbers, a numerical shock‐capturing mechanism is crucial in order to prevent unphysical oscillations of the polynomial approximation in the vicinity of shocks. We achieve this by means of a viscous smoothing where the artificial viscosity follows from a modal decay sensor that has been adapted to the IBM. The problem of the severe time step restriction caused by the additional second‐order diffusive term and small nonagglomerated cut cells is addressed by using an adaptive LTS algorithm. The robustness, stability, and accuracy of our approach are verified for several common test cases. Moreover, the results show that our approach lowers the computational costs drastically, especially for unsteady IBM problems with complex geometries.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Geisenhofer, Markus ; Kummer, Florian ; Müller, Björn
Art des Eintrags: Zweitveröffentlichung
Titel: A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity-based shock‐capturing on cut cells
Sprache: Englisch
Publikationsjahr: 9 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Ort der Erstveröffentlichung: Chichester
Verlag: John Wiley & Sons
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal for Numerical Methods in Fluids
Jahrgang/Volume einer Zeitschrift: 91
(Heft-)Nummer: 9
DOI: 10.26083/tuprints-00015956
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15956
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We present a higher‐order cut cell immersed boundary method (IBM) for the simulation of high Mach number flows. As a novelty on a cut cell grid, we evaluate an adaptive local time stepping (LTS) scheme in combination with an artificial viscosity–based shock‐capturing approach. The cut cell grid is optimized by a nonintrusive cell agglomeration strategy in order to avoid problems with small or ill‐shaped cut cells. Our approach is based on a discontinuous Galerkin discretization of the compressible Euler equations, where the immersed boundary is implicitly defined by the zero isocontour of a level set function. In flow configurations with high Mach numbers, a numerical shock‐capturing mechanism is crucial in order to prevent unphysical oscillations of the polynomial approximation in the vicinity of shocks. We achieve this by means of a viscous smoothing where the artificial viscosity follows from a modal decay sensor that has been adapted to the IBM. The problem of the severe time step restriction caused by the additional second‐order diffusive term and small nonagglomerated cut cells is addressed by using an adaptive LTS algorithm. The robustness, stability, and accuracy of our approach are verified for several common test cases. Moreover, the results show that our approach lowers the computational costs drastically, especially for unsteady IBM problems with complex geometries.

Freie Schlagworte: compressible flow, discontinuous Galerkin, immersed boundary, level set, supersonic, time integration
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-159563
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy)
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Energy Science and Engineering (ESE)
Hinterlegungsdatum: 09 Jan 2024 12:29
Letzte Änderung: 10 Jan 2024 09:55
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen