TU Darmstadt / ULB / TUbiblio

Exploring Adversarial Examples

Kügler, David ; Distergoft, Alexander ; Kuijper, Arjan ; Mukhopadhyay, Anirban (2018)
Exploring Adversarial Examples.
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Granada, Spain (16.09.2018-20.09.2018)
doi: 10.1007/978-3-030-02628-8_8
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Failure cases of black-box deep learning, e.g. adversarial examples, might have severe consequences in healthcare. Yet such failures are mostly studied in the context of real-world images with calibrated attacks. To demystify the adversarial examples, rigorous studies need to be designed. Unfortunately, complexity of the medical images hinders such study design directly from the medical images. We hypothesize that adversarial examples might result from the incorrect mapping of image space to the low dimensional generation manifold by deep networks. To test the hypothesis, we simplify a complex medical problem namely pose estimation of surgical tools into its barest form. An analytical decision boundary and exhaustive search of the one-pixel attack across multiple image dimensions let us localize the regions of frequent successful one-pixel attacks at the image space.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Kügler, David ; Distergoft, Alexander ; Kuijper, Arjan ; Mukhopadhyay, Anirban
Art des Eintrags: Bibliographie
Titel: Exploring Adversarial Examples
Sprache: Englisch
Publikationsjahr: 2018
Ort: Cham
Verlag: Springer
Buchtitel: Understanding and Interpreting Machine Learning in Medical Image Computing Applications
Reihe: Lecture Notes in Computer Science (LNCS)
Band einer Reihe: 11038
Veranstaltungstitel: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
Veranstaltungsort: Granada, Spain
Veranstaltungsdatum: 16.09.2018-20.09.2018
DOI: 10.1007/978-3-030-02628-8_8
URL / URN: https://doi.org/10.1007/978-3-030-02628-8_8
Kurzbeschreibung (Abstract):

Failure cases of black-box deep learning, e.g. adversarial examples, might have severe consequences in healthcare. Yet such failures are mostly studied in the context of real-world images with calibrated attacks. To demystify the adversarial examples, rigorous studies need to be designed. Unfortunately, complexity of the medical images hinders such study design directly from the medical images. We hypothesize that adversarial examples might result from the incorrect mapping of image space to the low dimensional generation manifold by deep networks. To test the hypothesis, we simplify a complex medical problem namely pose estimation of surgical tools into its barest form. An analytical decision boundary and exhaustive search of the one-pixel attack across multiple image dimensions let us localize the regions of frequent successful one-pixel attacks at the image space.

Freie Schlagworte: Convolutional Neural Networks (CNN), Deep learning, Pattern recognition, Feature recognition, Attack mechanisms
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 26 Jun 2019 11:45
Letzte Änderung: 03 Jul 2024 10:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen