TU Darmstadt / ULB / TUbiblio

An efficient Riemannian statistical shape model using differential coordinates

Tycowicz, Christoph von ; Ambellan, Felix ; Mukhopadhyay, Anirban ; Zachow, Stefan (2018)
An efficient Riemannian statistical shape model using differential coordinates.
In: Medical Image Analysis, 43
doi: 10.1016/j.media.2017.09.004
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential rep- resentation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidean structure. A key ad- vantage of our framework is that statistics in a manifold shape space becomes numerically tractable im- proving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differ- ences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidean approach in terms of shape-based classification of morphological disorders.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Tycowicz, Christoph von ; Ambellan, Felix ; Mukhopadhyay, Anirban ; Zachow, Stefan
Art des Eintrags: Bibliographie
Titel: An efficient Riemannian statistical shape model using differential coordinates
Sprache: Englisch
Publikationsjahr: 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Medical Image Analysis
Jahrgang/Volume einer Zeitschrift: 43
DOI: 10.1016/j.media.2017.09.004
URL / URN: https://doi.org/10.1016/j.media.2017.09.004
Kurzbeschreibung (Abstract):

We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential rep- resentation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidean structure. A key ad- vantage of our framework is that statistics in a manifold shape space becomes numerically tractable im- proving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differ- ences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidean approach in terms of shape-based classification of morphological disorders.

Freie Schlagworte: Statistical shape models (SSM), Medical diagnosis, Feature classifications
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 19 Jun 2019 11:08
Letzte Änderung: 28 Jul 2021 11:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen