TU Darmstadt / ULB / TUbiblio

Video Attachment to "Real-Time Pose Graph SLAM based on Radar", presented at IEEE Intelligent Vehicles Symposium 2019

Holder, Martin Friedrich ; Hellwig, Sven ; Winner, Hermann
Hrsg.: Holder, Martin Friedrich (2019)
Video Attachment to "Real-Time Pose Graph SLAM based on Radar", presented at IEEE Intelligent Vehicles Symposium 2019.
Anderes, Erstveröffentlichung

Kurzbeschreibung (Abstract)

This work presents a real-time pose graph based Simultaneous Localization and Mapping (SLAM) system for automotive Radar. The algorithm constructs a map from Radar detections using the Iterative Closest Point (ICP) method to match consecutive scans obtained from a single, front-facing Radar sensor. The algorithm is evaluated on a range of real-world datasets and shows mean translational errors as low as 0.62 m and demonstrates robustness on long tracks. Using a single Radar, our proposed system achieves state-of-the-art performance when compared to other Radar-based SLAM algorithms that use multiple, higher-resolution Radars.

Typ des Eintrags: Anderes
Erschienen: 2019
Herausgeber: Holder, Martin Friedrich
Autor(en): Holder, Martin Friedrich ; Hellwig, Sven ; Winner, Hermann
Art des Eintrags: Erstveröffentlichung
Titel: Video Attachment to "Real-Time Pose Graph SLAM based on Radar", presented at IEEE Intelligent Vehicles Symposium 2019
Sprache: Englisch
Publikationsjahr: 10 Juni 2019
URL / URN: https://tuprints.ulb.tu-darmstadt.de/8756
Kurzbeschreibung (Abstract):

This work presents a real-time pose graph based Simultaneous Localization and Mapping (SLAM) system for automotive Radar. The algorithm constructs a map from Radar detections using the Iterative Closest Point (ICP) method to match consecutive scans obtained from a single, front-facing Radar sensor. The algorithm is evaluated on a range of real-world datasets and shows mean translational errors as low as 0.62 m and demonstrates robustness on long tracks. Using a single Radar, our proposed system achieves state-of-the-art performance when compared to other Radar-based SLAM algorithms that use multiple, higher-resolution Radars.

URN: urn:nbn:de:tuda-tuprints-87567
Zusätzliche Informationen:

Video Attachment to "Real-Time Pose Graph SLAM based on Radar", presented at IEEE Intelligent Vehicles Symposium 2019

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD)
Hinterlegungsdatum: 09 Jun 2019 19:55
Letzte Änderung: 23 Jun 2020 09:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen