TU Darmstadt / ULB / TUbiblio

hoDCA: higher order direct-coupling analysis.

Schmidt, Michael ; Hamacher, Kay (2018)
hoDCA: higher order direct-coupling analysis.
In: BMC bioinformatics, 19 (1)
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

BACKGROUND

Direct-coupling analysis (DCA) is a method for protein contact prediction from sequence information alone. Its underlying principle is parameter estimation for a Hamiltonian interaction function stemming from a maximum entropy model with one- and two-point interactions. Vastly growing sequence databases enable the construction of large multiple sequence alignments (MSA). Thus, enough data exists to include higher order terms, such as three-body correlations.

RESULTS

We present an implementation of hoDCA, which is an extension of DCA by including three-body interactions into the inverse Ising problem posed by parameter estimation. In a previous study, these three-body-interactions improved contact prediction accuracy for the PSICOV benchmark dataset. Our implementation can be executed in parallel, which results in fast runtimes and makes it suitable for large-scale application.

CONCLUSION

Our hoDCA software allows improved contact prediction using the Julia language, leveraging power of multi-core machines in an automated fashion.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Schmidt, Michael ; Hamacher, Kay
Art des Eintrags: Bibliographie
Titel: hoDCA: higher order direct-coupling analysis.
Sprache: Englisch
Publikationsjahr: 29 Dezember 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: BMC bioinformatics
Jahrgang/Volume einer Zeitschrift: 19
(Heft-)Nummer: 1
Zugehörige Links:
Kurzbeschreibung (Abstract):

BACKGROUND

Direct-coupling analysis (DCA) is a method for protein contact prediction from sequence information alone. Its underlying principle is parameter estimation for a Hamiltonian interaction function stemming from a maximum entropy model with one- and two-point interactions. Vastly growing sequence databases enable the construction of large multiple sequence alignments (MSA). Thus, enough data exists to include higher order terms, such as three-body correlations.

RESULTS

We present an implementation of hoDCA, which is an extension of DCA by including three-body interactions into the inverse Ising problem posed by parameter estimation. In a previous study, these three-body-interactions improved contact prediction accuracy for the PSICOV benchmark dataset. Our implementation can be executed in parallel, which results in fast runtimes and makes it suitable for large-scale application.

CONCLUSION

Our hoDCA software allows improved contact prediction using the Julia language, leveraging power of multi-core machines in an automated fashion.

ID-Nummer: pmid:30594145
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Computational Biology and Simulation
Hinterlegungsdatum: 07 Jan 2019 07:18
Letzte Änderung: 03 Jul 2024 02:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen