TU Darmstadt / ULB / TUbiblio

Practical Noise Reduction for Progressive Stochastic Ray Tracing with Perceptual Control

Schwenk, Karsten ; Kuijper, Arjan ; Behr, Johannes ; Fellner, Dieter W. (2012)
Practical Noise Reduction for Progressive Stochastic Ray Tracing with Perceptual Control.
In: IEEE Computer Graphics and Applications, 32 (6)
doi: 10.1109/MCG.2012.30
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A proposed method reduces noise in stochastic ray tracing for interactive progressive rendering. The method accumulates high-variance light paths in a separate buffer, which is filtered by a high-quality edge-preserving filter. Then, this method adds a combination of the noisy unfiltered samples and the less noisy (but biased) filtered samples to the low-variance samples to form the final image. A novel per-pixel blending operator combines both contributions in a way that respects a user-defined threshold on perceived noise. This method can provide fast, reliable previews, even in the presence of complex features such as specular surfaces and high-frequency textures. At the same time, it's consistent in that the bias due to filtering vanishes in the limit.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Schwenk, Karsten ; Kuijper, Arjan ; Behr, Johannes ; Fellner, Dieter W.
Art des Eintrags: Bibliographie
Titel: Practical Noise Reduction for Progressive Stochastic Ray Tracing with Perceptual Control
Sprache: Englisch
Publikationsjahr: 2012
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Computer Graphics and Applications
Jahrgang/Volume einer Zeitschrift: 32
(Heft-)Nummer: 6
DOI: 10.1109/MCG.2012.30
Kurzbeschreibung (Abstract):

A proposed method reduces noise in stochastic ray tracing for interactive progressive rendering. The method accumulates high-variance light paths in a separate buffer, which is filtered by a high-quality edge-preserving filter. Then, this method adds a combination of the noisy unfiltered samples and the less noisy (but biased) filtered samples to the low-variance samples to form the final image. A novel per-pixel blending operator combines both contributions in a way that respects a user-defined threshold on perceived noise. This method can provide fast, reliable previews, even in the presence of complex features such as specular surfaces and high-frequency textures. At the same time, it's consistent in that the bias due to filtering vanishes in the limit.

Freie Schlagworte: Business Field: Virtual engineering, Research Area: Confluence of graphics and vision, Forschungsgruppe Semantic Models, Immersive Systems (SMIS), Filtering, Ray tracing, Global illumination
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 04 Feb 2022 12:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen