TU Darmstadt / ULB / TUbiblio

High Resolution Acquisition of Detailed Surfaces with Lens-Shifted Structured Light

Ritz, Martin ; Langguth, Fabian ; Scholz, Manuel ; Goesele, Michael ; Stork, André (2012)
High Resolution Acquisition of Detailed Surfaces with Lens-Shifted Structured Light.
In: Computers & Graphics, 36 (1)
doi: 10.1016/j.cag.2011.10.004
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We present a novel 3D geometry acquisition technique at high resolution based on structured light reconstruction with a low-cost projector-camera system. Using a 1D mechanical lens-shifter extension in the projector light path, the projected pattern is shifted in subpixel scale steps with a granularity of up to 2048 steps per projected pixel, which opens up novel possibilities in depth accuracy and smoothness for the acquired geometry. Combining the mechanical lens-shifter extension with a multiple phase shifting technique yields a measuring range of 120×80 mm while at the same time providing a high depth resolution of better than 100µm. Reaching beyond depth resolutions achieved by conventional structured light scanning approaches with projector-camera systems, depth layering effects inherent to conventional techniques are fully avoided. Relying on low-cost consumer products only, we reach an area resolution of down to 55µm (limited by the camera). We see two main benefits. First, our acquisition setup can reconstruct finest details of small cultural heritage objects such as antique coins and thus digitally preserve them in appropriate precision. Second, our accurate height fields are a viable input to physically based rendering in combination with measured material BRDFs to reproduce compelling spatially varying, material-specific effects.

Typ des Eintrags: Artikel
Erschienen: 2012
Autor(en): Ritz, Martin ; Langguth, Fabian ; Scholz, Manuel ; Goesele, Michael ; Stork, André
Art des Eintrags: Bibliographie
Titel: High Resolution Acquisition of Detailed Surfaces with Lens-Shifted Structured Light
Sprache: Englisch
Publikationsjahr: 2012
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computers & Graphics
Jahrgang/Volume einer Zeitschrift: 36
(Heft-)Nummer: 1
DOI: 10.1016/j.cag.2011.10.004
Kurzbeschreibung (Abstract):

We present a novel 3D geometry acquisition technique at high resolution based on structured light reconstruction with a low-cost projector-camera system. Using a 1D mechanical lens-shifter extension in the projector light path, the projected pattern is shifted in subpixel scale steps with a granularity of up to 2048 steps per projected pixel, which opens up novel possibilities in depth accuracy and smoothness for the acquired geometry. Combining the mechanical lens-shifter extension with a multiple phase shifting technique yields a measuring range of 120×80 mm while at the same time providing a high depth resolution of better than 100µm. Reaching beyond depth resolutions achieved by conventional structured light scanning approaches with projector-camera systems, depth layering effects inherent to conventional techniques are fully avoided. Relying on low-cost consumer products only, we reach an area resolution of down to 55µm (limited by the camera). We see two main benefits. First, our acquisition setup can reconstruct finest details of small cultural heritage objects such as antique coins and thus digitally preserve them in appropriate precision. Second, our accurate height fields are a viable input to physically based rendering in combination with measured material BRDFs to reproduce compelling spatially varying, material-specific effects.

Freie Schlagworte: Business Field: Digital society, Research Area: Generalized digital documents, Research Area: Confluence of graphics and vision, Computer vision, 3D Scanning, Image acquisition, Mesostructure acquisition, Image generation, Scene analysis, Range data
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 12 Nov 2018 11:16
Letzte Änderung: 09 Dez 2021 11:46
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen