TU Darmstadt / ULB / TUbiblio

BINet: Multivariate Business Process Anomaly Detection Using Deep Learning

Nolle, Timo ; Seeliger, Alexander ; Mühlhäuser, Max
Hrsg.: Weske, Mathias ; Montali, Marco ; Weber, Ingo ; vom Brocke, Jan (2018)
BINet: Multivariate Business Process Anomaly Detection Using Deep Learning.
Sydney, Australia (09.09.2018-14.09.2018)
doi: 10.1007/978-3-319-98648-7_16
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we propose BINet, a neural network architecture for real-time multivariate anomaly detection in business process event logs. BINet has been designed to handle both the control flow and the data perspective of a business process. Additionally, we propose a heuristic for setting the threshold of an anomaly detection algorithm automatically. We demonstrate that BINet can be used to detect anomalies in event logs not only on a case level, but also on event attribute level. We compare BINet to 6 other state-of-the-art anomaly detection algorithms and evaluate their performance on an elaborate data corpus of 60 synthetic and 21 real life event logs using artificial anomalies. BINet reached an average F₁ score over all detection levels of 0.83, whereas the next best approach, a denoising autoencoder, reached only 0.74. This F₁ score is calculated over two different levels of detection, namely case and attribute level. BINet reached 0.84 on case and 0.82 on attribute level, whereas the next best approach reached 0.78 and 0.71 respectively.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Herausgeber: Weske, Mathias ; Montali, Marco ; Weber, Ingo ; vom Brocke, Jan
Autor(en): Nolle, Timo ; Seeliger, Alexander ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: BINet: Multivariate Business Process Anomaly Detection Using Deep Learning
Sprache: Englisch
Publikationsjahr: 11 August 2018
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Business Process Management. BPM 2018. Lecture Notes in Computer Science
Veranstaltungsort: Sydney, Australia
Veranstaltungsdatum: 09.09.2018-14.09.2018
Auflage: 11080
DOI: 10.1007/978-3-319-98648-7_16
URL / URN: https://doi.org/10.1007/978-3-319-98648-7_16
Kurzbeschreibung (Abstract):

In this paper, we propose BINet, a neural network architecture for real-time multivariate anomaly detection in business process event logs. BINet has been designed to handle both the control flow and the data perspective of a business process. Additionally, we propose a heuristic for setting the threshold of an anomaly detection algorithm automatically. We demonstrate that BINet can be used to detect anomalies in event logs not only on a case level, but also on event attribute level. We compare BINet to 6 other state-of-the-art anomaly detection algorithms and evaluate their performance on an elaborate data corpus of 60 synthetic and 21 real life event logs using artificial anomalies. BINet reached an average F₁ score over all detection levels of 0.83, whereas the next best approach, a denoising autoencoder, reached only 0.74. This F₁ score is calculated over two different levels of detection, namely case and attribute level. BINet reached 0.84 on case and 0.82 on attribute level, whereas the next best approach reached 0.78 and 0.71 respectively.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 29 Aug 2018 07:08
Letzte Änderung: 14 Jun 2021 06:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen