TU Darmstadt / ULB / TUbiblio

Electroless Synthesis of Highly Stable and Free-Standing Porous Pt Nanotube Networks and their Application in Methanol Oxidation

Walbert, Torsten ; Antoni, Markus ; Muench, Falk ; Späth, Thomas ; Ensinger, Wolfgang (2018)
Electroless Synthesis of Highly Stable and Free-Standing Porous Pt Nanotube Networks and their Application in Methanol Oxidation.
In: ChemElectroChem, 5 (7)
doi: 10.1002/celc.201701271
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Free‐standing 3D metal nanostructures represent an upcoming class of electrocatalysts for fuel cell technology, combining high aging stability and activity with efficient metal utilization while abstaining from additives such as polymer binders. Until now, most fabrication routes are complex and produce disordered nanostructures. Here, we present a highly adjustable, wet‐chemical synthesis route toward ordered, thin‐walled Pt nanotube networks. The approach includes an optimized electroless plating procedure and enables easy regulation of structural parameters (i. e. nanotube diameter, wall thickness, density) by using ion track‐etched polycarbonate templates. In comparison to individual nanotubes, the resulting nanonetworks exhibit a free‐standing and robust frame, which is a great advantage for use in various electrochemical and catalytic applications. Cyclic voltammetry studies of the methanol oxidation reaction demonstrate enhanced electrocatalytic activity compared to commercially available Pt nanoparticles. The nanonetworks provide outstanding long‐life stability with up to 97 % of the initial active surface area after 1000 cycles, which makes them a promising material in different application fields, for example, in direct methanol fuel cells.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Walbert, Torsten ; Antoni, Markus ; Muench, Falk ; Späth, Thomas ; Ensinger, Wolfgang
Art des Eintrags: Bibliographie
Titel: Electroless Synthesis of Highly Stable and Free-Standing Porous Pt Nanotube Networks and their Application in Methanol Oxidation
Sprache: Englisch
Publikationsjahr: 3 April 2018
Verlag: Wiley-VCH Verlag GmbH, Weinheim
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ChemElectroChem
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 7
DOI: 10.1002/celc.201701271
URL / URN: https://doi.org/10.1002/celc.201701271
Kurzbeschreibung (Abstract):

Free‐standing 3D metal nanostructures represent an upcoming class of electrocatalysts for fuel cell technology, combining high aging stability and activity with efficient metal utilization while abstaining from additives such as polymer binders. Until now, most fabrication routes are complex and produce disordered nanostructures. Here, we present a highly adjustable, wet‐chemical synthesis route toward ordered, thin‐walled Pt nanotube networks. The approach includes an optimized electroless plating procedure and enables easy regulation of structural parameters (i. e. nanotube diameter, wall thickness, density) by using ion track‐etched polycarbonate templates. In comparison to individual nanotubes, the resulting nanonetworks exhibit a free‐standing and robust frame, which is a great advantage for use in various electrochemical and catalytic applications. Cyclic voltammetry studies of the methanol oxidation reaction demonstrate enhanced electrocatalytic activity compared to commercially available Pt nanoparticles. The nanonetworks provide outstanding long‐life stability with up to 97 % of the initial active surface area after 1000 cycles, which makes them a promising material in different application fields, for example, in direct methanol fuel cells.

Freie Schlagworte: cyclic voltammetry, electrocatalysis, electroless plating, nanotubes, platinum
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
Hinterlegungsdatum: 27 Jun 2018 07:55
Letzte Änderung: 27 Jun 2018 07:55
PPN:
Sponsoren: Financial support by the German Research Foundation is gratefully acknowledged (Project MIT-Nano).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen