TU Darmstadt / ULB / TUbiblio

Finding Structure in the Unstructured: Hybrid Feature Set Clustering for Process Discovery

Seeliger, Alexander ; Nolle, Timo ; Mühlhäuser, Max
Hrsg.: Weske, Mathias ; Montali, Marco ; Weber, Ingo ; vom Brocke, Jan (2018)
Finding Structure in the Unstructured: Hybrid Feature Set Clustering for Process Discovery.
Sydney, Australia
doi: 10.1007/978-3-319-98648-7_17
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Process discovery is widely used in business process intelligence to reconstruct process models from event logs recorded by information systems. With the increase of complexity and flexibility of processes, it is getting more and more challenging for discovery algorithms to generate accurate and comprehensive models. Trace clustering aims to overcome this issue by splitting event logs into smaller behavioral similar sub-logs. From these sub-logs more accurate and comprehensive process models can be reconstructed. In this paper, we propose a novel clustering approach that uses frequent itemset mining on the case attributes to also reveal relationships on the data perspective. Our approach includes this additional knowledge as well as optimizes the fitness of the underlying process models of each cluster to generate accurate clustering results. We compare our method with six other clustering methods and evaluate our approach using synthetic and real-life event logs.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Herausgeber: Weske, Mathias ; Montali, Marco ; Weber, Ingo ; vom Brocke, Jan
Autor(en): Seeliger, Alexander ; Nolle, Timo ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: Finding Structure in the Unstructured: Hybrid Feature Set Clustering for Process Discovery
Sprache: Englisch
Publikationsjahr: 9 September 2018
Ort: Cham
Verlag: Springer International Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Business Process Management. BPM 2018. Lecture Notes in Computer Science
Buchtitel: Business Process Management
Reihe: 16
Veranstaltungsort: Sydney, Australia
Auflage: 11080
DOI: 10.1007/978-3-319-98648-7_17
Kurzbeschreibung (Abstract):

Process discovery is widely used in business process intelligence to reconstruct process models from event logs recorded by information systems. With the increase of complexity and flexibility of processes, it is getting more and more challenging for discovery algorithms to generate accurate and comprehensive models. Trace clustering aims to overcome this issue by splitting event logs into smaller behavioral similar sub-logs. From these sub-logs more accurate and comprehensive process models can be reconstructed. In this paper, we propose a novel clustering approach that uses frequent itemset mining on the case attributes to also reveal relationships on the data perspective. Our approach includes this additional knowledge as well as optimizes the fitness of the underlying process models of each cluster to generate accurate clustering results. We compare our method with six other clustering methods and evaluate our approach using synthetic and real-life event logs.

Freie Schlagworte: Knowledge discovery, Process discovery, Trace clustering, Process Mining, Business Process Intelligence
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 19 Jun 2018 09:47
Letzte Änderung: 14 Jun 2021 06:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen