TU Darmstadt / ULB / TUbiblio

Process Compliance Checking using Taint Flow Analysis

Seeliger, Alexander ; Nolle, Timo ; Schmidt, Benedikt ; Mühlhäuser, Max (2016)
Process Compliance Checking using Taint Flow Analysis.
Dublin, Ireland
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Due to the growing complexity of processes, regulations, policies and guidelines (e.g., Sarbanes-Oxley-Act) computer-assisted business process analysis - known as process mining - is becoming more and more relevant for organisations. One discipline of process mining is backward compliance checking, which aims to detect non-compliant process variants based on historic data. Most existing approaches compare the "as-is" view with desired process models. However, most organisations do not maintain such models, making such approaches less attractive. This paper proposes a process flow analysis which uses graph-reachability to check whether the actual "as-is" process graph violates compliance constraints. Our approach is inspired by the taint flow algorithm which is used in code analysis to identify security vulnerabilities in software applications. We conducted a case study evaluating the compliance of event logs and performed a benchmark to show that our approach outperforms the LTL checker and the PetriNet pattern approach in ProM.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Seeliger, Alexander ; Nolle, Timo ; Schmidt, Benedikt ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: Process Compliance Checking using Taint Flow Analysis
Sprache: Englisch
Publikationsjahr: 11 Dezember 2016
Verlag: AIS
Buchtitel: Proceedings of the 37th International Conference on Information Systems (ICIS)
Band einer Reihe: 37
Veranstaltungsort: Dublin, Ireland
Zugehörige Links:
Kurzbeschreibung (Abstract):

Due to the growing complexity of processes, regulations, policies and guidelines (e.g., Sarbanes-Oxley-Act) computer-assisted business process analysis - known as process mining - is becoming more and more relevant for organisations. One discipline of process mining is backward compliance checking, which aims to detect non-compliant process variants based on historic data. Most existing approaches compare the "as-is" view with desired process models. However, most organisations do not maintain such models, making such approaches less attractive. This paper proposes a process flow analysis which uses graph-reachability to check whether the actual "as-is" process graph violates compliance constraints. Our approach is inspired by the taint flow algorithm which is used in code analysis to identify security vulnerabilities in software applications. We conducted a case study evaluating the compliance of event logs and performed a benchmark to show that our approach outperforms the LTL checker and the PetriNet pattern approach in ProM.

ID-Nummer: TUD-CS-2016-1455
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > NICER – Vernetzte infrastrukturlose Kooperation zur Krisenbewältigung
Hinterlegungsdatum: 31 Dez 2016 12:59
Letzte Änderung: 14 Jun 2021 06:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen