TU Darmstadt / ULB / TUbiblio

Highly accurate numerical computation of implicitly defined volumes using the Laplace-Beltrami operator

Kromer, Johannes Richard ; Bothe, Dieter (2018)
Highly accurate numerical computation of implicitly defined volumes using the Laplace-Beltrami operator.
In: arXiv preprint arXiv:1805.03136
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

This paper introduces a novel method for the efficient and accurate computation of the volume of a domain whose boundary is given by an orientable hypersurface which is implicitly given as the iso-contour of a sufficiently smooth level-set function. After spatial discretization, local approximation of the hypersurface and application of the Gaussian divergence theorem, the volume integrals are transformed to surface integrals. Application of the surface divergence theorem allows for a further reduction to line integrals which are advantageous for numerical quadrature. We discuss the theoretical foundations and provide details of the numerical algorithm. Finally, we present numerical results for convex and non-convex hypersurfaces embedded in cuboidal domains, showing both high accuracy and thrid- to fourth-order convergence in space.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Kromer, Johannes Richard ; Bothe, Dieter
Art des Eintrags: Bibliographie
Titel: Highly accurate numerical computation of implicitly defined volumes using the Laplace-Beltrami operator
Sprache: Englisch
Publikationsjahr: 8 Mai 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: arXiv preprint arXiv:1805.03136
URL / URN: https://arxiv.org/abs/1805.03136
Kurzbeschreibung (Abstract):

This paper introduces a novel method for the efficient and accurate computation of the volume of a domain whose boundary is given by an orientable hypersurface which is implicitly given as the iso-contour of a sufficiently smooth level-set function. After spatial discretization, local approximation of the hypersurface and application of the Gaussian divergence theorem, the volume integrals are transformed to surface integrals. Application of the surface divergence theorem allows for a further reduction to line integrals which are advantageous for numerical quadrature. We discuss the theoretical foundations and provide details of the numerical algorithm. Finally, we present numerical results for convex and non-convex hypersurfaces embedded in cuboidal domains, showing both high accuracy and thrid- to fourth-order convergence in space.

Freie Schlagworte: volume computation;numerical quadrature;Laplace-Beltrami
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Analysis
04 Fachbereich Mathematik > Analysis > Mathematische Modellierung und Analysis
04 Fachbereich Mathematik > Mathematische Modellierung und Analysis (MMA)
Hinterlegungsdatum: 06 Jun 2018 05:45
Letzte Änderung: 07 Feb 2024 11:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen