TU Darmstadt / ULB / TUbiblio

Blättern nach Person

Ebene hoch
Exportieren als [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Gruppiere nach: Keine Gruppierung | Typ des Eintrags | Publikationsjahr | Sprache
Anzahl der Einträge: 18.

Artikel

Farwig, Reinhard ; Sohr, Hermann ; Varnhorn, Werner (2015)
LOCAL STRONG SOLUTIONS OF THE NONHOMOGENEOUS NAVIER-STOKES SYSTEM WITH CONTROL OF THE INTERVAL OF EXISTENCE.
In: Topological Methods in Nonlinear Analysis, 46 (2)
Artikel, Bibliographie

Farwig, Reinhard ; Sohr, Hermann ; Varnhorn, Werner (2014)
Besov Space Regularity Conditions for Weak Solutions of the Navier-Stokes Equations.
In: Journal of Mathematical Fluid Mechanics, 16
Artikel, Bibliographie

Farwig, Reinhard ; Sohr, Hermann ; Varnhorn, Werner (2012)
Extensions of Serrin's Uniqueness and Regularity Conditions for the Navier-Stokes Equations.
In: Journal of Mathematical Fluid Mechanics, 14
Artikel, Bibliographie

Farwig, Reinhard ; Sohr, Hermann ; Varnhorn, Werner (2011)
Necessary and sufficient conditions on local strong solvability of the Navier-Stokes system.
In: Applicable Analysis, 90
Artikel, Bibliographie

Farwig, Reinhard ; Sohr, Hermann (2010)
On the existence of local strong solutions for the Navier-Stokes equations in completely general domains.
In: Nonlinear Analysis-Theory Methods & Applications, 73
Artikel, Bibliographie

Farwig, Reinhard ; Kozono, Hideo ; Sohr, Hermann (2007)
Local in time regularity properties of the Navier-Stokes equations.
In: Indiana University Mathematics Journal, 56
Artikel, Bibliographie

Farwig, Reinhard ; Kozono, Hideo ; Sohr, Hermann (2007)
On the Helmholtz decomposition in general unbounded domains.
In: Archiv der Mathematik, 88
Artikel, Bibliographie

Farwig, Reinhard ; Kozono, Hideo ; Sohr, Hermann (2007)
Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data.
In: Journal of the Mathematical Society of Japan, 59
Artikel, Bibliographie

Farwig, Reinhard ; Kozono, Hideo ; Sohr, Hermann (2006)
Local in time regularity properties of the Navier-Stokes equations.
In: Indiana University Mathematics Journal : Preprint 2465(2006) FB Mathematik TU Darmstadt. 20 S.
Artikel, Bibliographie

Farwig, Reinhard ; Galdi, Giovanni P. ; Sohr, Hermann (2006)
Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bonded domains of R2.
In: Journal of Differential Equations, 227
Artikel, Bibliographie

Farwig, Reinhard ; Galdi, Giovanni P. ; Sohr, Hermann (2006)
A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data.
In: Journal of Mathematical Fluid Mechanics, 8
Artikel, Bibliographie

Farwig, Reinhard ; Kozono, Hideo ; Sohr, Hermann (2005)
An Lq-approach to Stokes and Navier-Stokes equations in general domains.
In: Acta Mathematica, 195
Artikel, Bibliographie

Buchkapitel

Farwig, Reinhard ; Galdi, Giovanni P. ; Sohr, Hermann (2005)
Very weak solutions of stationary and instationary Navier-Stokes equations with nonhomogeneous data.
In: Nonlinear elliptic and parabolic problems : a special tribute to the work of Herbert Amann
Buchkapitel, Bibliographie

Konferenzveröffentlichung

Farwig, Reinhard ; Galdi, Giovanni P. ; Sohr, Hermann (2006)
The Helmholtz decomposition in arbitrary unbounded domains : a theory beyond L2.
Konferenzveröffentlichung, Bibliographie

Report

Farwig, Reinhard ; Kozono, Hideo ; Sohr, Hermann (2005)
The Helmholtz decomposition in arbitrary unbounded domains : a theory beyond L2.
Report, Bibliographie

Farwig, Reinhard ; Galdi, Giovanni P. ; Sohr, Hermann (2005)
Large Existence, Uniqueness and Regularity Classes of Stationary Navier-Stokes Equations in Bounded Domains of Rn.
Report, Bibliographie

Farwig, Reinhard ; Galdi, Giovanni P. ; Sohr, Hermann (2005)
Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of R2.
Report, Bibliographie

Farwig, Reinhard ; Kozono, Hideo ; Sohr, Hermann (2005)
Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data.
Report, Bibliographie

Diese Liste wurde am Tue Nov 19 02:53:57 2024 CET generiert.