TU Darmstadt / ULB / TUbiblio

Blättern nach Person

Ebene hoch
Exportieren als [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Springe zu: Englisch
Anzahl der Einträge: 13.

Englisch

Zhao, Wei ; Glavaš, Goran ; Peyrard, Maxime ; Gao, Yang ; West, Robert ; Eger, Steffen (2020)
On the Limitations of Cross-lingual Encoders as Exposed by Reference-Free Machine Translation Evaluation.
ACL'20: 58th Annual Meeting of the Association for Computational Linguistics. virtual Conference (05.07.2020-10.07.2020)
doi: 10.18653/v1/2020.acl-main.151
Konferenzveröffentlichung, Bibliographie

Peyrard, Maxime (2019)
Principled Approaches to Automatic Text Summarization.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung

Zhao, Wei ; Peyrard, Maxime ; Liu, Fei ; Gao, Yang ; Meyer, Christian M. ; Eger, Steffen (2019)
MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance.
The 2019 Conference on Empirical Methods in Natural Language Processing. Hong Kong, China (03.11.2019-07.11.2019)
doi: 10.18653/v1/D19-1053
Konferenzveröffentlichung, Bibliographie

Peyrard, Maxime ; Gurevych, Iryna (2018)
Objective Function Learning to Match Human Judgements for Optimization-Based Summarization.
16th Annual Conference of the North American Chapter of the Association for Computational Linguistics. New Orleans, USA (01.06.2018-06.06.2018)
Konferenzveröffentlichung, Bibliographie

P. V. S., Avinesh ; Peyrard, Maxime ; Meyer, Christian M. (2018)
Live Blog Corpus for Summarization.
Miyazaki, Japan
Konferenzveröffentlichung, Bibliographie

Rücklé, Andreas ; Eger, Steffen ; Peyrard, Maxime ; Gurevych, Iryna (2018)
Concatenated Power Mean Word Embeddings as Universal Cross-Lingual Sentence Representations.
In: arXiv:1803.01400
Artikel, Bibliographie

Peyrard, Maxime ; Botschen, Teresa ; Gurevych, Iryna (2017)
Learning to Score System Summaries for Better Content Selection Evaluation.
EMNLP workshop "New Frontiers in Summarization". Copenhagen, Denmark (07.09.2017-07.09.2017)
Konferenzveröffentlichung, Bibliographie

Peyrard, Maxime ; Eckle-Kohler, Judith (2017)
A Principled Framework for Evaluating Summarizers: Comparing Models of Summary Quality against Human Judgments.
55th Annual Meeting of the Association for Computational Linguistics (ACL 2017). Vancouver, Canada (30.07.2017-04.08.2017)
doi: 10.18653/v1/P17-1100
Konferenzveröffentlichung, Bibliographie

Peyrard, Maxime ; Eckle-Kohler, Judith (2017)
Supervised Learning of Automatic Pyramid for Optimization-Based Multi-Document Summarization.
55th Annual Meeting of the Association for Computational Linguistics (ACL 2017). Vancouver, Canada (30.07.2017-04.08.2017)
Konferenzveröffentlichung, Bibliographie

Bugert, Michael ; Puzikov, Yevgeniy ; Rücklé, Andreas ; Eckle-Kohler, Judith ; Martin, Teresa ; Martínez Cámara, Eugenio ; Sorokin, Daniil ; Peyrard, Maxime ; Gurevych, Iryna (2017)
LSDSem 2017: Exploring Data Generation Methods for the Story Cloze Test.
The 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics. Valencia, Spain (03.04.2017-04.04.2017)
Konferenzveröffentlichung, Bibliographie

Peyrard, Maxime ; Eckle-Kohler, Judith (2016)
A General Optimization Framework for Multi-Document Summarization Using Genetic Algorithms and Swarm Intelligence.
26th International Conference on Computational Linguistics (COLING 2016). Osaka, Japan (11.12.2016-16.12.2016)
Konferenzveröffentlichung, Bibliographie

Zopf, Markus ; Peyrard, Maxime ; Eckle-Kohler, Judith (2016)
The Next Step for Multi-Document Summarization: A Heterogeneous Multi-Genre Corpus Built with a Novel Construction Approach.
Osaka, Japan
Konferenzveröffentlichung, Bibliographie

Peyrard, Maxime ; Eckle-Kohler, Judith (2016)
Optimizing an Approximation of ROUGE - a Problem-Reduction Approach to Extractive Multi-Document Summarization.
54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany (07.08.2016-12.08.2016)
doi: 10.18653/v1/P16-1172
Konferenzveröffentlichung, Bibliographie

Diese Liste wurde am Sat Jan 11 03:45:42 2025 CET generiert.