Browse by Person
![]() | Up a level |
Giga, Yoshikazu ; Gries, Mathis ; Hieber, Matthias ; Hussein, Amru ; Kashiwabara, Takahito (2020):
The hydrostatic Stokes semigroup and well-posedness of the primitive equations on spaces of bounded functions.
In: Journal of Functional Analysis, 279 (3), p. 108561. ISSN 00221236,
DOI: 10.1016/j.jfa.2020.108561,
[Article]
Hieber, Matthias ; Kozono, Hideo ; Seyfert, Anton ; Shimizu, Senjo ; Yanagisawa, Taku (2020):
The Helmholtz–Weyl decomposition of Lr vector fields for two dimensional exterior domains.
In: The Journal of Geometric Analysis, 2020, Springer, ISSN 1050-6926,
DOI: 10.1007/s12220-020-00473-4,
[Article]
Hieber, Matthias ; Stinner, Christian (2020):
Strong time periodic solutions to Keller-Segel systems: An approach by the quasilinear Arendt-Bu theorem.
In: Journal of Differential Equations, 269 (2), pp. 1636-1655. ISSN 00220396,
DOI: 10.1016/j.jde.2020.01.020,
[Article]
Hieber, Matthias ; Kajiwara, Naoto ; Kress, Klaus ; Tolksdorf, Patrick (2020):
The periodic version of the Da Prato–Grisvard theorem and applications to the bidomain equations with FitzHugh–Nagumo transport.
In: Annali di Matematica Pura ed Applicata (1923 -), ISSN 0373-3114,
DOI: 10.1007/s10231-020-00975-6,
[Article]
Giga, Yoshikazu ; Gries, Mathis ; Hieber, Matthias ; Hussein, Amru ; Kashiwabara, Takahito (2019):
Analyticity of solutions to the primitive equations.
In: Mathematische Nachrichten, 2020, ISSN 0025-584X,
DOI: 10.1002/mana.201700401,
[Article]
Hieber, Matthias ; Mahalov, Alex ; Takada, Ryo (2019):
Time periodic and almost time periodic solutions to rotating stratified fluids subject to large forces.
In: Journal of Differential Equations, 266 (2-3), pp. 977-1002. ISSN 00220396,
DOI: 10.1016/j.jde.2018.07.067,
[Article]
Hieber, Matthias ; Prüss, Jan (2018):
On the bidomain problem with FitzHugh–Nagumo transport.
In: Archiv der Mathematik, 111 (3), pp. 313-327. ISSN 0003-889X,
DOI: 10.1007/s00013-018-1188-7,
[Article]
Hieber, Matthias ; Prüss, Jan (2017):
Dynamics of the Ericksen–Leslie equations with general Leslie stress I: the incompressible isotropic case.
In: Mathematische Annalen, 369 (3-4), pp. 977-996. ISSN 0025-5831,
DOI: 10.1007/s00208-016-1453-7,
[Article]
Bothe, Dieter ; Denk, Robert ; Hieber, Matthias ; Schnaubelt, Roland ; Simonett, Gieri ; Wilke, Mathias ; Zacher, Rico (2017):
Special Issue: Parabolic Evolution Equations, Maximal Regularity, and Applications - Dedicated to Jan Pruss Preface.
In: Journal of Evolution Equations, 17 (1), pp. 1-15. ISSN 1424-3199,
[Article]
Hieber, Matthias ; Saito, Hirokazu (2017):
Strong solutions for two-phase free boundary problems for a class of non-Newtonian fluids.
In: Journal of Evolution Equations, 17 (1), pp. 335-358. ISSN 1424-3199,
[Article]
Galdi, Giovanni P. ; Hieber, Matthias ; Kashiwabara, Takahito (2017):
Strong time-periodic solutions to the 3D primitive equations subject to arbitrary large forces.
In: Nonlinearity, 30 (10), pp. 3979-3992. ISSN 0951-7715,
DOI: 10.1088/1361-6544/aa8166,
[Article]
Hieber, Matthias ; Nesensohn, Manuel ; Pruess, Jan ; Schade, Katharina (2016):
Dynamics of nematic liquid crystal flows: The quasilinear approach.
In: Annales De L Institut Henri Poincare-Analyse Non Lineaire, 33 (2), pp. 397-408. ISSN 0294-1449,
[Article]
Geissert, Matthias ; Hieber, Matthias ; Thieu Huy, Nguyen (2016):
A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems.
In: Archive for Rational Mechanics and Analysis, 220 (3), pp. 1095-1118. ISSN 0003-9527,
[Article]
Hieber, Matthias ; Kashiwabara, Takahito (2016):
Global Strong Well-Posedness of the Three Dimensional Primitive Equations in L-p-Spaces.
In: Archive for Rational Mechanics and Analysis, 221 (3), pp. 1077-1115. ISSN 0003-9527,
[Article]
Hieber, Matthias ; Hussein, Amru ; Kashiwabara, Takahito (2016):
Global strong L-P well-posedness of the 3D primitive equations with heat and salinity diffusion.
In: Journal of Differential Equations, 261 (12), pp. 6950-6981. ISSN 0022-0396,
[Article]
Hieber, Matthias ; Murata, Miho (2015):
THE L-P-APPROACH TO THE FLUID-RIGID BODY INTERACTION PROBLEM FOR COMPRESSIBLE FLUIDS.
In: Evolution Equations and Control Theory, 4 (1), pp. 69-87. ISSN 2163-2480,
[Article]
Bolkart, Martin ; Hieber, Matthias (2015):
Pointwise upper bounds for the solution of the Stokes equation on L-sigma(infinity)(Omega) and applications.
In: Journal of Functional Analysis, 268 (7), pp. 1678-1710. ISSN 0022-1236,
[Article]
Abe, Ken ; Giga, Yoshikazu ; Hieber, Matthias (2015):
STOKES RESOLVENT ESTIMATES IN SPACES OF BOUNDED FUNCTIONS.
In: Annales Scientifiques De L Ecole Normale Superieure, 48 (3), pp. 537-559. ISSN 0012-9593,
[Article]
Geissert, Matthias ; Hieber, Matthias ; Nguyen Thieu, Huy (2014):
Stability results for fluids of Oldroyd-B type on exterior domains.
In: Journal of Mathematical Physics, 55, [Article]
Campiti, Michele ; Galdi, Giovanni P. ; Hieber, Matthias (2014):
GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR 2-DIMENSIONAL NAVIER-STOKES EQUATIONS ON EXTERIOR DOMAINS WITH GROWING DATA AT INFINITY.
In: Communications on Pure and Applied Analysis, 13, pp. 1613-1627. [Article]
Hieber, Matthias ; Monniaux, Sylvie (2013):
WELL-POSEDNESS RESULTS FOR THE NAVIER-STOKES EQUATIONS IN THE ROTATIONAL FRAMEWORK.
In: Discrete and Continuous Dynamical Systems, 33, pp. 5143-5151. [Article]
Fang, Daoyuang ; Hieber, Matthias ; Zi, Ruizhao (2013):
Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters.
In: Mathematische Annalen, 357, pp. 687-709. [Article]
Hieber, Matthias (2013):
REMARKS ON THE THEORY OF OLDROYD-B FLUIDS IN EXTERIOR DOMAINS.
In: Discrete and Continuous Dynamical Systems-Series S, 6, pp. 1307-1313. [Article]
Geissert, Matthias ; Goetze, Karoline ; Hieber, Matthias (2013):
L-p-THEORY FOR STRONG SOLUTIONS TO FLUID-RIGID BODY INTERACTION IN NEWTONIAN AND GENERALIZED NEWTONIAN FLUIDS.
In: Transactions of the American Mathematical Society, 365, pp. 1393-1439. [Article]
Hieber, Matthias ; Stannat, Wilhelm (2013):
Stochastic stability of the Ekman spiral.
In: Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze, 12, pp. 189-208. [Article]
Geissert, Matthias ; Heck, Horst ; Hieber, Matthias ; Sawada, Okihiro (2012):
Weak Neumann implies Stokes.
In: Journal Fur Die Reine Und Angewandte Mathematik, 669, pp. 75-100. [Article]
Hieber, Matthias ; Naito, Yuka ; Shibata, Yoshihiro (2012):
Global existence results for Oldroyd-B fluids in exterior domains.
In: Journal of Differential Equations, 252, pp. 2617-2629. [Article]
Fang, Daoyuan ; Hieber, Matthias ; Zhang, Ting (2012):
Density-dependent incompressible viscous fluid flow subject to linearly growing initial data.
In: Applicable Analysis, 91, pp. 1477-1493. [Article]
Denk, Robert ; Geissert, Matthias ; Hieber, Matthias ; Saal, Juergen ; Sawada, Okihiro (2011):
The Spin-Coating Process: Analysis of the Free Boundary Value Problem.
In: Communications in Partial Differential Equations, 36 (7), pp. 1145-1192. Taylor & Francis, ISSN 0360-5302,
[Article]
Hieber, Matthias ; Shibata, Yoshihiro (2010):
The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework.
In: Mathematische Zeitschrift, 265, pp. 481-491. [Article]
Geissert, Matthias ; Hess, Matthias ; Hieber, Matthias ; Schwarz, Celine ; Stavrakidis, Kyriakos (2010):
Maximal L-p-L-q-Estimates for the Stokes Equation: a Short Proof of Solonnikov's Theorem.
In: Journal of Mathematical Fluid Mechanics, 12, pp. 47-60. [Article]
Haller-Dintelmann, Robert ; Heck, Horst ; Hieber, Matthias (2006):
Lp-Lq-estimates for parabolic systems in non-divergence form with VMO coefficients.
In: Journal of the London Mathematical Society (2), 74, pp. 717--736. [Article]
Haller-Dintelmann, Robert ; Hieber, Matthias (2005):
Hoo-calculus for products of non-commuting operators.
In: Mathematische Zeitschrift, 251, pp. 85-100. [Article]
Heck, Horst ; Hieber, Matthias (2003):
Maximal LP-regularity for elliptic operators with VMO-coefficients.
In: Journal of evolution equations, 3, [Article]
Haller-Dintelmann, Robert ; Heck, Horst ; Hieber, Matthias (2003):
Muckenhaupt weights and maximal Lp-regularity.
In: Archiv der Mathematik, 81, pp. 422-430. [Article]