TU Darmstadt / ULB / TUbiblio

Browse by Person

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: No Grouping | Item Type | Date | Language
Jump to: German | English
Number of items: 7.

German

Bienefeld, Christoph ; Vogt, Andreas ; Kacmar, Marian ; Kirchner, Eckhard (2021)
Feature-Engineering für die Zustandsüberwachung von Wälzlagern mittels maschinellen Lernens.
In: Tribologie und Schmierungstechnik, 68 (6)
doi: 10.24053/TuS-2021-0032
Article, Bibliographie

English

Bienefeld, Christoph (2024)
A Contribution on the Transferability of Data-Driven Models for Bearing Fault Diagnosis.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00027475
Ph.D. Thesis, Primary publication, Publisher's Version

Bienefeld, Christoph ; Becker-Dombrowsky, Florian Michael ; Shatri, Etnik ; Kirchner, Eckhard (2023)
Investigation of feature engineering methods for domain-knowledge-assisted bearing fault diagnosis.
In: Entropy, 25 (9)
doi: 10.3390/e25091278
Article, Bibliographie

Wenzel, Jan ; Bienefeld, Christoph ; Kretschmer, Alexander ; Kirchner, Eckhard (2022)
Introducing an Open-Source Simulation Model for Track Rollers Considering Friction.
In: Applied Mechanics, 3 (2)
doi: 10.3390/applmech3020041
Article, Bibliographie

Bienefeld, Christoph ; Kirchner, Eckhard ; Vogt, Andreas ; Kacmar, Marian (2022)
On the Importance of Temporal Information for Remaining Useful Life Prediction of Rolling Bearings Using a Random Forest Regressor.
In: Lubricants, 10 (4)
doi: 10.3390/lubricants10040067
Article, Bibliographie

Kirchner, Eckhard ; Bienefeld, Christoph ; Schirra, Tobias ; Moltschanov, Alexander (2022)
Predicting the Electrical Impedance of Rolling Bearings Using Machine Learning Methods.
In: Machines, 10 (2)
doi: 10.3390/machines10020156
Article, Bibliographie

Bienefeld, Christoph ; Vogt, Andreas ; Kacmar, Marian ; Kirchner, Eckhard (2021)
Physics-based feature engineering for predicting the remaining useful life of ball bearings.
Conference or Workshop Item, Bibliographie

This list was generated on Tue Sep 10 01:34:38 2024 CEST.