Do, Trinh Minh Tri ; Dousse, Olivier ; Miettinen, Markus ; Gatica-Perez, Daniel (2015)
A probabilistic kernel method for human mobility prediction with smartphones.
In: Pervasive and Mobile Computing, 20
doi: 10.1016/j.pmcj.2014.09.001
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Human mobility prediction is an important problem that has a large number of applications, especially in context-aware services. This paper presents a study on location prediction using smartphone data, in which we address modeling and application aspects. Building personalized location prediction models from smartphone data remains a technical challenge due to data sparsity, which comes from the complexity of human behavior and the typically limited amount of data available for individual users. To address this problem, we propose an approach based on kernel density estimation, a popular smoothing technique for sparse data. Our approach contributes to existing work in two ways. First, our proposed model can estimate the probability that a user will be at a given location at a specific time in the future, by using both spatial and temporal information via multiple kernel functions. Second, we also show how our probabilistic framework extends to a more practical task of location prediction for a time window in the future. Our approach is validated on an everyday life location dataset consisting of 133 smartphone users. Our method reaches an accuracy of 84% for the next hour, and an accuracy of 77% for the next three hours.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2015 |
Autor(en): | Do, Trinh Minh Tri ; Dousse, Olivier ; Miettinen, Markus ; Gatica-Perez, Daniel |
Art des Eintrags: | Bibliographie |
Titel: | A probabilistic kernel method for human mobility prediction with smartphones |
Sprache: | Deutsch |
Publikationsjahr: | Juli 2015 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Pervasive and Mobile Computing |
Jahrgang/Volume einer Zeitschrift: | 20 |
DOI: | 10.1016/j.pmcj.2014.09.001 |
Kurzbeschreibung (Abstract): | Human mobility prediction is an important problem that has a large number of applications, especially in context-aware services. This paper presents a study on location prediction using smartphone data, in which we address modeling and application aspects. Building personalized location prediction models from smartphone data remains a technical challenge due to data sparsity, which comes from the complexity of human behavior and the typically limited amount of data available for individual users. To address this problem, we propose an approach based on kernel density estimation, a popular smoothing technique for sparse data. Our approach contributes to existing work in two ways. First, our proposed model can estimate the probability that a user will be at a given location at a specific time in the future, by using both spatial and temporal information via multiple kernel functions. Second, we also show how our probabilistic framework extends to a more practical task of location prediction for a time window in the future. Our approach is validated on an everyday life location dataset consisting of 133 smartphone users. Our method reaches an accuracy of 84% for the next hour, and an accuracy of 77% for the next three hours. |
Freie Schlagworte: | ICRI-SC |
ID-Nummer: | TUD-CS-2014-0977 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Systemsicherheit Profilbereiche Profilbereiche > Cybersicherheit (CYSEC) |
Hinterlegungsdatum: | 04 Aug 2016 10:13 |
Letzte Änderung: | 27 Sep 2018 09:20 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |