TU Darmstadt / ULB / TUbiblio

A probabilistic kernel method for human mobility prediction with smartphones

Do, Trinh Minh Tri ; Dousse, Olivier ; Miettinen, Markus ; Gatica-Perez, Daniel (2015)
A probabilistic kernel method for human mobility prediction with smartphones.
In: Pervasive and Mobile Computing, 20
doi: 10.1016/j.pmcj.2014.09.001
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Human mobility prediction is an important problem that has a large number of applications, especially in context-aware services. This paper presents a study on location prediction using smartphone data, in which we address modeling and application aspects. Building personalized location prediction models from smartphone data remains a technical challenge due to data sparsity, which comes from the complexity of human behavior and the typically limited amount of data available for individual users. To address this problem, we propose an approach based on kernel density estimation, a popular smoothing technique for sparse data. Our approach contributes to existing work in two ways. First, our proposed model can estimate the probability that a user will be at a given location at a specific time in the future, by using both spatial and temporal information via multiple kernel functions. Second, we also show how our probabilistic framework extends to a more practical task of location prediction for a time window in the future. Our approach is validated on an everyday life location dataset consisting of 133 smartphone users. Our method reaches an accuracy of 84% for the next hour, and an accuracy of 77% for the next three hours.

Typ des Eintrags: Artikel
Erschienen: 2015
Autor(en): Do, Trinh Minh Tri ; Dousse, Olivier ; Miettinen, Markus ; Gatica-Perez, Daniel
Art des Eintrags: Bibliographie
Titel: A probabilistic kernel method for human mobility prediction with smartphones
Sprache: Deutsch
Publikationsjahr: Juli 2015
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Pervasive and Mobile Computing
Jahrgang/Volume einer Zeitschrift: 20
DOI: 10.1016/j.pmcj.2014.09.001
Kurzbeschreibung (Abstract):

Human mobility prediction is an important problem that has a large number of applications, especially in context-aware services. This paper presents a study on location prediction using smartphone data, in which we address modeling and application aspects. Building personalized location prediction models from smartphone data remains a technical challenge due to data sparsity, which comes from the complexity of human behavior and the typically limited amount of data available for individual users. To address this problem, we propose an approach based on kernel density estimation, a popular smoothing technique for sparse data. Our approach contributes to existing work in two ways. First, our proposed model can estimate the probability that a user will be at a given location at a specific time in the future, by using both spatial and temporal information via multiple kernel functions. Second, we also show how our probabilistic framework extends to a more practical task of location prediction for a time window in the future. Our approach is validated on an everyday life location dataset consisting of 133 smartphone users. Our method reaches an accuracy of 84% for the next hour, and an accuracy of 77% for the next three hours.

Freie Schlagworte: ICRI-SC
ID-Nummer: TUD-CS-2014-0977
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Systemsicherheit
Profilbereiche
Profilbereiche > Cybersicherheit (CYSEC)
Hinterlegungsdatum: 04 Aug 2016 10:13
Letzte Änderung: 27 Sep 2018 09:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen