TU Darmstadt / ULB / TUbiblio

Minimizing the Age of Incorrect Information for Status Update Systems with Energy Harvesting

Dongare, Sumedh Jitendra ; Jovovich, Aleksandar ; De Sombre, Wanja ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja (2024)
Minimizing the Age of Incorrect Information for Status Update Systems with Energy Harvesting.
59th IEEE Internartional Conference on Communications (ICC'24). Denver, USA (09.06.2024 - 13.06.2024)
doi: 10.1109/ICC51166.2024.10622719
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Status Update Systems (SUSs) are central components in applications like environmental sensing or smart cities. They consist of a sender monitoring a remote process and sending the sensed information to a receiver. The sender aims to deliver fresh information about the monitored process's state to allow the receiver to timely respond to the process's changes. In SUSs, the sender is usually battery operated. Therefore, to increase the available energy we consider Energy Harvesting (EH). Moreover, as at the receiver the information transmitted by the sender is only relevant when the process's state changes, we measure the information's freshness using Age of Incorrect Information (AoII). Finding the optimal transmission strategy at the sender that minimizes the AoII requires perfect system knowledge, i.e., the behavior of the monitored process, the channel quality, and the available energy. However, in real applications this knowledge is usually not available. To overcome this challenge, we first establish the optimality of threshold-based policies for AoII minimization in SUSs with EH capabilities by proving that there exists an AoII value depending on the observed state of the monitored process, the battery level and the receiver's estimation of the monitored process's state beyond which transmitting is preferable over idling. Next, we exploit the threshold-based policies' structure and deploy a learning algorithm based on Finite-Difference Policy Gradient (FDPG). Our proposed approach finds the AoII thresholds without requiring perfect system knowledge. Simulations show that our approach outperforms reference algorithms by at least 20% and efficiently learns near-optimal policies for AoII minimization.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Dongare, Sumedh Jitendra ; Jovovich, Aleksandar ; De Sombre, Wanja ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja
Art des Eintrags: Bibliographie
Titel: Minimizing the Age of Incorrect Information for Status Update Systems with Energy Harvesting
Sprache: Englisch
Publikationsjahr: 20 August 2024
Verlag: IEEE
Buchtitel: ICC 2024 - IEEE International Conference on Communications
Veranstaltungstitel: 59th IEEE Internartional Conference on Communications (ICC'24)
Veranstaltungsort: Denver, USA
Veranstaltungsdatum: 09.06.2024 - 13.06.2024
DOI: 10.1109/ICC51166.2024.10622719
Kurzbeschreibung (Abstract):

Status Update Systems (SUSs) are central components in applications like environmental sensing or smart cities. They consist of a sender monitoring a remote process and sending the sensed information to a receiver. The sender aims to deliver fresh information about the monitored process's state to allow the receiver to timely respond to the process's changes. In SUSs, the sender is usually battery operated. Therefore, to increase the available energy we consider Energy Harvesting (EH). Moreover, as at the receiver the information transmitted by the sender is only relevant when the process's state changes, we measure the information's freshness using Age of Incorrect Information (AoII). Finding the optimal transmission strategy at the sender that minimizes the AoII requires perfect system knowledge, i.e., the behavior of the monitored process, the channel quality, and the available energy. However, in real applications this knowledge is usually not available. To overcome this challenge, we first establish the optimality of threshold-based policies for AoII minimization in SUSs with EH capabilities by proving that there exists an AoII value depending on the observed state of the monitored process, the battery level and the receiver's estimation of the monitored process's state beyond which transmitting is preferable over idling. Next, we exploit the threshold-based policies' structure and deploy a learning algorithm based on Finite-Difference Policy Gradient (FDPG). Our proposed approach finds the AoII thresholds without requiring perfect system knowledge. Simulations show that our approach outperforms reference algorithms by at least 20% and efficiently learns near-optimal policies for AoII minimization.

Freie Schlagworte: BMBF Open6GHub, DAAD, emergenCITY, emergenCITY_KOM
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C1 : Netzzentrische Sicht
Hinterlegungsdatum: 25 Okt 2024 11:53
Letzte Änderung: 25 Okt 2024 11:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen