TU Darmstadt / ULB / TUbiblio

Towards Continual Knowledge Learning of Vehicle CAN-data

Ahmed, Sajeel ; Esbel, Ousama ; Mühlhäuser, Max ; Sanchez Guinea, Alejandro (2023)
Towards Continual Knowledge Learning of Vehicle CAN-data.
IEEE Intelligent Vehicles Symposium (IV 2023). Anchorage, Alaska (04.06.2023 – 07.06.2023)
doi: 10.1109/iv55152.2023.10186715
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we propose a continual learning (CL) approach that adapts to the vehicle CAN-data flexibly and continuously. Our approach is capable of learning from vehicle CAN-bus data in multiple driving scenarios, adapting to the various drifts within each driving scenario. The basis for our approach corresponds to a common solver model and a series of supervisor models. Our solver model extends the memory-aware synapses approach with the use of weight cloning and weighted experience replay. Our supervisor model selects the output of the solver model that corresponds to the driving scenario present at the input. We evaluate our approach using a Tesla Model 3 CAN-data and 8 different driving scenarios. Our evaluation results show that our approach effectively learns multiple driving scenarios sequentially without forgetting the previous knowledge.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Ahmed, Sajeel ; Esbel, Ousama ; Mühlhäuser, Max ; Sanchez Guinea, Alejandro
Art des Eintrags: Bibliographie
Titel: Towards Continual Knowledge Learning of Vehicle CAN-data
Sprache: Englisch
Publikationsjahr: 27 Juli 2023
Verlag: IEEE
Buchtitel: IEEE IV 2023: Symposium Proceedings
Band einer Reihe: 114
Veranstaltungstitel: IEEE Intelligent Vehicles Symposium (IV 2023)
Veranstaltungsort: Anchorage, Alaska
Veranstaltungsdatum: 04.06.2023 – 07.06.2023
DOI: 10.1109/iv55152.2023.10186715
Kurzbeschreibung (Abstract):

In this paper, we propose a continual learning (CL) approach that adapts to the vehicle CAN-data flexibly and continuously. Our approach is capable of learning from vehicle CAN-bus data in multiple driving scenarios, adapting to the various drifts within each driving scenario. The basis for our approach corresponds to a common solver model and a series of supervisor models. Our solver model extends the memory-aware synapses approach with the use of weight cloning and weighted experience replay. Our supervisor model selects the output of the solver model that corresponds to the driving scenario present at the input. We evaluate our approach using a Tesla Model 3 CAN-data and 8 different driving scenarios. Our evaluation results show that our approach effectively learns multiple driving scenarios sequentially without forgetting the previous knowledge.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 13 Nov 2024 11:57
Letzte Änderung: 13 Nov 2024 11:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen