Cui, Kai ; Dayanikli, Gökce ; Laurière, Mathieu ; Geist, Matthieu ; Pietquin, Oliver ; Koeppl, Heinz (2024)
Learning Discrete-Time Major-Minor Mean Field Games.
38th AAAI Conference on Artificial Intelligence. Vancouver, Canada (20.02.2024 - 27.02.2024)
doi: 10.1609/aaai.v38i9.28818
Konferenzveröffentlichung, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Recent techniques based on Mean Field Games (MFGs) allow the scalable analysis of multi-player games with many similar, rational agents. However, standard MFGs remain limited to homogeneous players that weakly influence each other, and cannot model major players that strongly influence other players, severely limiting the class of problems that can be handled. We propose a novel discrete time version of major-minor MFGs (M3FGs), along with a learning algorithm based on fictitious play and partitioning the probability simplex. Importantly, M3FGs generalize MFGs with common noise and can handle not only random exogeneous environment states but also major players. A key challenge is that the mean field is stochastic and not deterministic as in standard MFGs. Our theoretical investigation verifies both the M3FG model and its algorithmic solution, showing firstly the well-posedness of the M3FG model starting from a finite game of interest, and secondly convergence and approximation guarantees of the fictitious play algorithm. Then, we empirically verify the obtained theoretical results, ablating some of the theoretical assumptions made, and show successful equilibrium learning in three example problems. Overall, we establish a learning framework for a novel and broad class of tractable games.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Cui, Kai ; Dayanikli, Gökce ; Laurière, Mathieu ; Geist, Matthieu ; Pietquin, Oliver ; Koeppl, Heinz |
Art des Eintrags: | Bibliographie |
Titel: | Learning Discrete-Time Major-Minor Mean Field Games |
Sprache: | Englisch |
Publikationsjahr: | 24 März 2024 |
Verlag: | AAAI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Proceedings of the AAAI Conference on Artificial Intelligence |
(Heft-)Nummer: | 9 |
Buchtitel: | Proceedings of the 38th AAAI Conference on Artificial Intelligence |
Reihe: | AAAI Technical Track on Game Theory and Economic Paradigms |
Band einer Reihe: | 38 |
Veranstaltungstitel: | 38th AAAI Conference on Artificial Intelligence |
Veranstaltungsort: | Vancouver, Canada |
Veranstaltungsdatum: | 20.02.2024 - 27.02.2024 |
DOI: | 10.1609/aaai.v38i9.28818 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Recent techniques based on Mean Field Games (MFGs) allow the scalable analysis of multi-player games with many similar, rational agents. However, standard MFGs remain limited to homogeneous players that weakly influence each other, and cannot model major players that strongly influence other players, severely limiting the class of problems that can be handled. We propose a novel discrete time version of major-minor MFGs (M3FGs), along with a learning algorithm based on fictitious play and partitioning the probability simplex. Importantly, M3FGs generalize MFGs with common noise and can handle not only random exogeneous environment states but also major players. A key challenge is that the mean field is stochastic and not deterministic as in standard MFGs. Our theoretical investigation verifies both the M3FG model and its algorithmic solution, showing firstly the well-posedness of the M3FG model starting from a finite game of interest, and secondly convergence and approximation guarantees of the fictitious play algorithm. Then, we empirically verify the obtained theoretical results, ablating some of the theoretical assumptions made, and show successful equilibrium learning in three example problems. Overall, we establish a learning framework for a novel and broad class of tractable games. |
Freie Schlagworte: | emergenCITY, emergenCITY_KOM |
Zusätzliche Informationen: | Erstveröffentlichung |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY Zentrale Einrichtungen Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner |
Hinterlegungsdatum: | 17 Jun 2024 11:03 |
Letzte Änderung: | 16 Jan 2025 15:18 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Learning Discrete-Time Major-Minor Mean Field Games. (deposited 16 Dez 2024 14:02)
- Learning Discrete-Time Major-Minor Mean Field Games. (deposited 17 Jun 2024 11:03) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |