Taştan, A. ; Muma, Michael ; Zoubir, A. M. (2023)
Fast and Robust Sparsity-Aware Block Diagonal Representation.
In: IEEE Transactions on Signal Processing, 72
doi: 10.1109/TSP.2023.3343565
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Taştan, A. ; Muma, Michael ; Zoubir, A. M. |
Art des Eintrags: | Bibliographie |
Titel: | Fast and Robust Sparsity-Aware Block Diagonal Representation |
Sprache: | Englisch |
Publikationsjahr: | 19 Dezember 2023 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Transactions on Signal Processing |
Jahrgang/Volume einer Zeitschrift: | 72 |
DOI: | 10.1109/TSP.2023.3343565 |
Kurzbeschreibung (Abstract): | The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance. |
Freie Schlagworte: | emergenCITY, emergenCITY_CPS |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY |
Hinterlegungsdatum: | 18 Jan 2024 09:37 |
Letzte Änderung: | 13 Nov 2024 10:54 |
PPN: | 515697575 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |