TU Darmstadt / ULB / TUbiblio

No One Size (PPM) Fits All: Towards Privacy in Stream Processing Systems

Fomichev, Mikhail ; Luthra, Manisha ; Benndorf, Maik ; Agnihotri, Pratyush (2023)
No One Size (PPM) Fits All: Towards Privacy in Stream Processing Systems.
Neuchatel, Switzerland
doi: 10.1145/3583678.3596889
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Stream processing systems (SPSs) have been designed to process data streams in real-time, allowing organizations to analyze and act upon data on-the-fly, as it is generated. However, handling sensitive or personal data in these multilayered SPSs that distribute resources across sensor, fog, and cloud layers raises privacy concerns, as the data may be subject to unauthorized access and attacks that can violate user privacy, hence facing regulations such as the GDPR across the SPS layers. To address these issues, different privacy-preserving mechanisms (PPMs) are proposed to protect user privacy in SPSs. Yet, selecting and applying such PPMs in SPSs is challenging, since they must operate in real-time while tolerating little overhead. The multilayered nature of SPSs complicates privacy protection because each layer may confront different privacy threats, which must be addressed by specific PPMs. To overcome these challenges, we present Prinseps, our comprehensive privacy vision for SPSs. Towards this vision, we (1) identify critical privacy threats on different layers of the multilayered SPS, (2) evaluate the effectiveness of existing PPMs in addressing such threats, and (3) integrate privacy considerations into the decision-making processes of SPSs.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Fomichev, Mikhail ; Luthra, Manisha ; Benndorf, Maik ; Agnihotri, Pratyush
Art des Eintrags: Bibliographie
Titel: No One Size (PPM) Fits All: Towards Privacy in Stream Processing Systems
Sprache: Englisch
Publikationsjahr: 27 Juni 2023
Ort: Neuchatel, Switzerland
Verlag: Association for Computing Machinery
Buchtitel: Proceedings of the 17th ACM International Conference on Distributed and Event-Based Systems
Reihe: DEBS '23
Veranstaltungsort: Neuchatel, Switzerland
DOI: 10.1145/3583678.3596889
URL / URN: https://doi.org/10.1145/3583678.3596889
Kurzbeschreibung (Abstract):

Stream processing systems (SPSs) have been designed to process data streams in real-time, allowing organizations to analyze and act upon data on-the-fly, as it is generated. However, handling sensitive or personal data in these multilayered SPSs that distribute resources across sensor, fog, and cloud layers raises privacy concerns, as the data may be subject to unauthorized access and attacks that can violate user privacy, hence facing regulations such as the GDPR across the SPS layers. To address these issues, different privacy-preserving mechanisms (PPMs) are proposed to protect user privacy in SPSs. Yet, selecting and applying such PPMs in SPSs is challenging, since they must operate in real-time while tolerating little overhead. The multilayered nature of SPSs complicates privacy protection because each layer may confront different privacy threats, which must be addressed by specific PPMs. To overcome these challenges, we present Prinseps, our comprehensive privacy vision for SPSs. Towards this vision, we (1) identify critical privacy threats on different layers of the multilayered SPS, (2) evaluate the effectiveness of existing PPMs in addressing such threats, and (3) integrate privacy considerations into the decision-making processes of SPSs.

Freie Schlagworte: privacy, threat modeling, access control, IoT, stream processing
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation
20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
20 Fachbereich Informatik > Sichere Mobile Netze
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C2: Informationszentrische Sicht
Hinterlegungsdatum: 31 Aug 2023 09:13
Letzte Änderung: 31 Aug 2023 09:30
PPN: 511186509
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen