TU Darmstadt / ULB / TUbiblio

Sparsity-Aware Block Diagonal Representation for Subspace Clustering

Taştan, Aylin ; Muma, Michael ; Ollila, Esa ; Zoubir, Abdelhak M. (2023)
Sparsity-Aware Block Diagonal Representation for Subspace Clustering.
31st European Signal Processing Conference (EUSIPCO 2023). Helsinki, Finland (04.09.2023-08.09.2023)
doi: 10.23919/EUSIPCO58844.2023.10289969
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

A block diagonally structured affinity matrix is an informative prior for subspace clustering which embeds the data points in a union of low-dimensional subspaces. Structuring a block diagonal matrix can be challenging due to the determination of an appropriate sparsity level, especially when outliers and heavy-tailed noise obscure the underlying subspaces. We propose a new sparsity-aware block diagonal representation (SABDR) method that robustly estimates the appropriate sparsity level by leveraging upon the geometrical analysis of the low-dimensional structure in spectral clustering. Specifically, we derive the Euclidean distance between the embeddings of different clusters to develop a computationally efficient density-based clustering algorithm. In this way, the sparsity parameter selection problem is re-formulated as a robust approximation of target between-clusters distances. Comprehensive experiments using real-world data demonstrate the effectiveness of SABDR in different subspace clustering applications.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Taştan, Aylin ; Muma, Michael ; Ollila, Esa ; Zoubir, Abdelhak M.
Art des Eintrags: Bibliographie
Titel: Sparsity-Aware Block Diagonal Representation for Subspace Clustering
Sprache: Englisch
Publikationsjahr: 1 November 2023
Verlag: IEEE
Buchtitel: 31st European Signal Processing Conference (EUSIPCO 2024): Proceedings
Veranstaltungstitel: 31st European Signal Processing Conference (EUSIPCO 2023)
Veranstaltungsort: Helsinki, Finland
Veranstaltungsdatum: 04.09.2023-08.09.2023
DOI: 10.23919/EUSIPCO58844.2023.10289969
Kurzbeschreibung (Abstract):

A block diagonally structured affinity matrix is an informative prior for subspace clustering which embeds the data points in a union of low-dimensional subspaces. Structuring a block diagonal matrix can be challenging due to the determination of an appropriate sparsity level, especially when outliers and heavy-tailed noise obscure the underlying subspaces. We propose a new sparsity-aware block diagonal representation (SABDR) method that robustly estimates the appropriate sparsity level by leveraging upon the geometrical analysis of the low-dimensional structure in spectral clustering. Specifically, we derive the Euclidean distance between the embeddings of different clusters to develop a computationally efficient density-based clustering algorithm. In this way, the sparsity parameter selection problem is re-formulated as a robust approximation of target between-clusters distances. Comprehensive experiments using real-world data demonstrate the effectiveness of SABDR in different subspace clustering applications.

Freie Schlagworte: emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 15 Nov 2023 09:20
Letzte Änderung: 25 Jan 2024 06:57
PPN: 514933151
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen