TU Darmstadt / ULB / TUbiblio

Attacks on Robust Distributed Learning Schemes via Sensitivity Curve Maximization

Schroth, Christian A. ; Vlaski, Stefan ; Zoubir, Abdelhak M. (2023)
Attacks on Robust Distributed Learning Schemes via Sensitivity Curve Maximization.
24th International Conference on Digital Signal Processing. Rhodes, Greece (11.06.2023-13.06.2023)
doi: 10.1109/DSP58604.2023.10167919
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Distributed learning paradigms, such as federated or decentralized learning, allow a collection of agents to solve global learning and optimization problems through limited local interactions. Most such strategies rely on a mixture of local adaptation and aggregation steps, either among peers or at a central fusion center. Classically, aggregation in distributed learning is based on averaging, which is statistically efficient, but susceptible to attacks by even a small number of malicious agents. This observation has motivated a number of recent works, which develop robust aggregation schemes by employing robust variations of the mean. We present a new attack based on sensitivity curve maximization (SCM), and demonstrate that it is able to disrupt existing robust aggregation schemes by injecting small, but effective perturbations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Schroth, Christian A. ; Vlaski, Stefan ; Zoubir, Abdelhak M.
Art des Eintrags: Bibliographie
Titel: Attacks on Robust Distributed Learning Schemes via Sensitivity Curve Maximization
Sprache: Englisch
Publikationsjahr: 5 Juli 2023
Verlag: IEEE
Buchtitel: 24th DSP 2023: 2023 24th International Conference on Digital Signal Processing
Veranstaltungstitel: 24th International Conference on Digital Signal Processing
Veranstaltungsort: Rhodes, Greece
Veranstaltungsdatum: 11.06.2023-13.06.2023
DOI: 10.1109/DSP58604.2023.10167919
Zugehörige Links:
Kurzbeschreibung (Abstract):

Distributed learning paradigms, such as federated or decentralized learning, allow a collection of agents to solve global learning and optimization problems through limited local interactions. Most such strategies rely on a mixture of local adaptation and aggregation steps, either among peers or at a central fusion center. Classically, aggregation in distributed learning is based on averaging, which is statistically efficient, but susceptible to attacks by even a small number of malicious agents. This observation has motivated a number of recent works, which develop robust aggregation schemes by employing robust variations of the mean. We present a new attack based on sensitivity curve maximization (SCM), and demonstrate that it is able to disrupt existing robust aggregation schemes by injecting small, but effective perturbations.

Freie Schlagworte: emergenCITY_CPS, emergenCITY
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 10 Jul 2023 10:16
Letzte Änderung: 10 Jul 2023 10:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen