TU Darmstadt / ULB / TUbiblio

Poster: Privacy-Preserving Epidemiological Modeling on Mobile Graphs

Günther, Daniel ; Holz, Marco ; Judkewitz, Benjamin ; Möllering, Helen ; Pinkas, Benny ; Schneider, Thomas ; Suresh, Ajith (2022)
Poster: Privacy-Preserving Epidemiological Modeling on Mobile Graphs.
CCS '22: ACM SIGSAC Conference on Computer and Communications Security. Los Angeles, USA (07.11.2022-11.11.2022)
doi: 10.1145/3548606.3563497
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Over the last two years, governments all over the world have used a variety of containment measures to control the spread of \covid, such as contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those policies before they are implemented in actuality. Unfortunately, their predictive accuracy is hampered by the scarcity of relevant empirical data, concretely detailed social contact graphs. As this data is inherently privacy-critical, there is an urgent need for a method to perform powerful epidemiological simulations on real-world contact graphs without disclosing sensitive information.

In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework that enables the execution of a wide range of standard epidemiological models for any infectious disease on a population's most recent real contact graph while keeping all contact information private locally on the participants' devices. Our theoretical constructs are supported by a proof-of-concept implementation in which we show that a 2-week simulation over a population of half a million can be finished in 7 minutes with each participant consuming less than 50 KB of data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Günther, Daniel ; Holz, Marco ; Judkewitz, Benjamin ; Möllering, Helen ; Pinkas, Benny ; Schneider, Thomas ; Suresh, Ajith
Art des Eintrags: Bibliographie
Titel: Poster: Privacy-Preserving Epidemiological Modeling on Mobile Graphs
Sprache: Englisch
Publikationsjahr: 7 November 2022
Verlag: ACM
Buchtitel: CCS '22: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
Veranstaltungstitel: CCS '22: ACM SIGSAC Conference on Computer and Communications Security
Veranstaltungsort: Los Angeles, USA
Veranstaltungsdatum: 07.11.2022-11.11.2022
DOI: 10.1145/3548606.3563497
URL / URN: https://dl.acm.org/doi/abs/10.1145/3548606.3563497
Kurzbeschreibung (Abstract):

Over the last two years, governments all over the world have used a variety of containment measures to control the spread of \covid, such as contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those policies before they are implemented in actuality. Unfortunately, their predictive accuracy is hampered by the scarcity of relevant empirical data, concretely detailed social contact graphs. As this data is inherently privacy-critical, there is an urgent need for a method to perform powerful epidemiological simulations on real-world contact graphs without disclosing sensitive information.

In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework that enables the execution of a wide range of standard epidemiological models for any infectious disease on a population's most recent real contact graph while keeping all contact information private locally on the participants' devices. Our theoretical constructs are supported by a proof-of-concept implementation in which we show that a 2-week simulation over a population of half a million can be finished in 7 minutes with each participant consuming less than 50 KB of data.

Freie Schlagworte: Engineering, E4, E7, ATHENE, GRK Privacy&Trust for Mobile Users (Project A.1)
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Praktische Kryptographie und Privatheit
20 Fachbereich Informatik > Kryptographische Protokolle
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Profilbereiche
Profilbereiche > Cybersicherheit (CYSEC)
Forschungsfelder
Forschungsfelder > Information and Intelligence
Forschungsfelder > Information and Intelligence > Cybersecurity & Privacy
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 21 Mär 2023 08:41
Letzte Änderung: 29 Jul 2024 12:42
PPN: 509743633
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen