TU Darmstadt / ULB / TUbiblio

False Discovery Rate Control for Grouped Variable Selection in High-Dimensional Linear Models Using the T-Knock Filter

Machkour, Jasin ; Muma, Michael ; Palomar, Daniel P. (2022)
False Discovery Rate Control for Grouped Variable Selection in High-Dimensional Linear Models Using the T-Knock Filter.
30th European Signal Processing Conference. Belgrade, Serbia (29.08.2022-02.09.2022)
doi: 10.23919/EUSIPCO55093.2022.9909883
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

High-dimensional variable selection is a challenging task, especially when groups of highly correlated variables are present in the data, such as in genomics research, direction-of-arrival estimation, and financial engineering. Recently, the T-Knock filter, a new framework for fast variable selection in high-dimensional settings has been developed. It provably controls the false discovery rate (FDR) at a given target level. However, its current version does not consider groups of highly correlated variables, which can lead to a loss in the true positive rate (TPR), i.e., the power. Hence, we propose the T-Knock+GVS filter that allows for grouped variable selection with FDR control in such settings. This is achieved by modifying the forward variable selection algorithm within the T- Knock filter and by adjusting the knockoff generation process such that the generated sets of knockoffs mimic the group correlation structure within the original set of variables. For a special case, we prove that the proposed T−Knock+GVS filter possesses the grouped variable selection property. Through a simulated high-dimensional genome-wide association study (GWAS), we show that the proposed method significantly increases the TPR, while controlling the FDR at the target level.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Machkour, Jasin ; Muma, Michael ; Palomar, Daniel P.
Art des Eintrags: Bibliographie
Titel: False Discovery Rate Control for Grouped Variable Selection in High-Dimensional Linear Models Using the T-Knock Filter
Sprache: Englisch
Publikationsjahr: 18 Oktober 2022
Verlag: IEEE
Buchtitel: 30th European Signal Processing Conference (EUSIPCO 2022): Proceedings
Veranstaltungstitel: 30th European Signal Processing Conference
Veranstaltungsort: Belgrade, Serbia
Veranstaltungsdatum: 29.08.2022-02.09.2022
DOI: 10.23919/EUSIPCO55093.2022.9909883
Kurzbeschreibung (Abstract):

High-dimensional variable selection is a challenging task, especially when groups of highly correlated variables are present in the data, such as in genomics research, direction-of-arrival estimation, and financial engineering. Recently, the T-Knock filter, a new framework for fast variable selection in high-dimensional settings has been developed. It provably controls the false discovery rate (FDR) at a given target level. However, its current version does not consider groups of highly correlated variables, which can lead to a loss in the true positive rate (TPR), i.e., the power. Hence, we propose the T-Knock+GVS filter that allows for grouped variable selection with FDR control in such settings. This is achieved by modifying the forward variable selection algorithm within the T- Knock filter and by adjusting the knockoff generation process such that the generated sets of knockoffs mimic the group correlation structure within the original set of variables. For a special case, we prove that the proposed T−Knock+GVS filter possesses the grouped variable selection property. Through a simulated high-dimensional genome-wide association study (GWAS), we show that the proposed method significantly increases the TPR, while controlling the FDR at the target level.

Freie Schlagworte: emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 27 Feb 2023 13:07
Letzte Änderung: 23 Apr 2024 08:39
PPN: 508534410
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen