Machkour, Jasin ; Muma, Michael ; Palomar, Daniel P. (2022)
False Discovery Rate Control for Grouped Variable Selection in High-Dimensional Linear Models Using the T-Knock Filter.
30th European Signal Processing Conference. Belgrade, Serbia (29.08.2022-02.09.2022)
doi: 10.23919/EUSIPCO55093.2022.9909883
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
High-dimensional variable selection is a challenging task, especially when groups of highly correlated variables are present in the data, such as in genomics research, direction-of-arrival estimation, and financial engineering. Recently, the T-Knock filter, a new framework for fast variable selection in high-dimensional settings has been developed. It provably controls the false discovery rate (FDR) at a given target level. However, its current version does not consider groups of highly correlated variables, which can lead to a loss in the true positive rate (TPR), i.e., the power. Hence, we propose the T-Knock+GVS filter that allows for grouped variable selection with FDR control in such settings. This is achieved by modifying the forward variable selection algorithm within the T- Knock filter and by adjusting the knockoff generation process such that the generated sets of knockoffs mimic the group correlation structure within the original set of variables. For a special case, we prove that the proposed T−Knock+GVS filter possesses the grouped variable selection property. Through a simulated high-dimensional genome-wide association study (GWAS), we show that the proposed method significantly increases the TPR, while controlling the FDR at the target level.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Machkour, Jasin ; Muma, Michael ; Palomar, Daniel P. |
Art des Eintrags: | Bibliographie |
Titel: | False Discovery Rate Control for Grouped Variable Selection in High-Dimensional Linear Models Using the T-Knock Filter |
Sprache: | Englisch |
Publikationsjahr: | 18 Oktober 2022 |
Verlag: | IEEE |
Buchtitel: | 30th European Signal Processing Conference (EUSIPCO 2022): Proceedings |
Veranstaltungstitel: | 30th European Signal Processing Conference |
Veranstaltungsort: | Belgrade, Serbia |
Veranstaltungsdatum: | 29.08.2022-02.09.2022 |
DOI: | 10.23919/EUSIPCO55093.2022.9909883 |
Kurzbeschreibung (Abstract): | High-dimensional variable selection is a challenging task, especially when groups of highly correlated variables are present in the data, such as in genomics research, direction-of-arrival estimation, and financial engineering. Recently, the T-Knock filter, a new framework for fast variable selection in high-dimensional settings has been developed. It provably controls the false discovery rate (FDR) at a given target level. However, its current version does not consider groups of highly correlated variables, which can lead to a loss in the true positive rate (TPR), i.e., the power. Hence, we propose the T-Knock+GVS filter that allows for grouped variable selection with FDR control in such settings. This is achieved by modifying the forward variable selection algorithm within the T- Knock filter and by adjusting the knockoff generation process such that the generated sets of knockoffs mimic the group correlation structure within the original set of variables. For a special case, we prove that the proposed T−Knock+GVS filter possesses the grouped variable selection property. Through a simulated high-dimensional genome-wide association study (GWAS), we show that the proposed method significantly increases the TPR, while controlling the FDR at the target level. |
Freie Schlagworte: | emergenCITY_CPS |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY Zentrale Einrichtungen Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner |
Hinterlegungsdatum: | 27 Feb 2023 13:07 |
Letzte Änderung: | 23 Apr 2024 08:39 |
PPN: | 508534410 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |