Mauricio, Weskley V. F. ; Maciel, Tarcisio Ferreira ; Klein, Anja ; Marques Lima, Francisco Rafael (2022)
Scheduling for Massive MIMO with Hybrid Precoding using Contextual Multi-Armed Bandits.
In: IEEE Transactions on Vehicular Technology, 71 (7)
doi: 10.1109/TVT.2022.3166654
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In this work we study different scheduling problems in the downlink of a Frequency Division Duplex multiuser wireless system that employs a hybrid precoding antenna architecture for massive Multiple Input Multiple Output. In this context, we propose a scheduling framework using Reinforcement Learning (RL) tools, namely Contextual Multi-Armed Bandits (CMAB), that can dynamically adapt themselves to solve three scheduling problems, which are: i) Maximum Throughput (MT); ii) Maximum Throughput with Fairness Guarantees (MTFG), and; iii) Maximum Throughput with QoS Guarantees (MTQG), which are well-known relevant problems. Before performing scheduling itself, we exploit statistical Channel State Information (CSI) to create clusters of spatially compatible User Equipmentss (UEss). This structure, combined with the usage of Zero-Forcing precoding, allows us to reduce the scheduler complexity by considering each cluster as an independent virtual RL scheduling agent. Next, we apply a new learning-based scheduler aiming to optimize the desired system performance metric. Moreover, only scheduled UEss need to feed back instantaneous equivalent CSI, which also reduces the signaling overhead of the proposal. The superiority of the proposed framework is demonstrated through numerical simulations in comparison with reference solutions.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Mauricio, Weskley V. F. ; Maciel, Tarcisio Ferreira ; Klein, Anja ; Marques Lima, Francisco Rafael |
Art des Eintrags: | Bibliographie |
Titel: | Scheduling for Massive MIMO with Hybrid Precoding using Contextual Multi-Armed Bandits |
Sprache: | Englisch |
Publikationsjahr: | Juli 2022 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Transactions on Vehicular Technology |
Jahrgang/Volume einer Zeitschrift: | 71 |
(Heft-)Nummer: | 7 |
DOI: | 10.1109/TVT.2022.3166654 |
URL / URN: | https://ieeexplore.ieee.org/abstract/document/9756247 |
Kurzbeschreibung (Abstract): | In this work we study different scheduling problems in the downlink of a Frequency Division Duplex multiuser wireless system that employs a hybrid precoding antenna architecture for massive Multiple Input Multiple Output. In this context, we propose a scheduling framework using Reinforcement Learning (RL) tools, namely Contextual Multi-Armed Bandits (CMAB), that can dynamically adapt themselves to solve three scheduling problems, which are: i) Maximum Throughput (MT); ii) Maximum Throughput with Fairness Guarantees (MTFG), and; iii) Maximum Throughput with QoS Guarantees (MTQG), which are well-known relevant problems. Before performing scheduling itself, we exploit statistical Channel State Information (CSI) to create clusters of spatially compatible User Equipmentss (UEss). This structure, combined with the usage of Zero-Forcing precoding, allows us to reduce the scheduler complexity by considering each cluster as an independent virtual RL scheduling agent. Next, we apply a new learning-based scheduler aiming to optimize the desired system performance metric. Moreover, only scheduled UEss need to feed back instantaneous equivalent CSI, which also reduces the signaling overhead of the proposal. The superiority of the proposed framework is demonstrated through numerical simulations in comparison with reference solutions. |
Freie Schlagworte: | DAAD, Open6HUB, emergenCITY, emergenCITY_KOM |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B3: Adaptionsökonomie DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C1 : Netzzentrische Sicht |
Hinterlegungsdatum: | 23 Jan 2023 14:32 |
Letzte Änderung: | 06 Feb 2024 11:30 |
PPN: | 505734672 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |