TU Darmstadt / ULB / TUbiblio

Motif-based mean-field approximation of interacting particles on clustered networks

Cui, Kai ; KhudaBukhsh, Wasiur R. ; Koeppl, Heinz (2022)
Motif-based mean-field approximation of interacting particles on clustered networks.
In: Physical Review E, 105 (4)
doi: 10.1103/PhysRevE.105.L042301
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Interacting particles on graphs are routinely used to study magnetic behavior in physics, disease spread in epidemiology, and opinion dynamics in social sciences. The literature on mean-field approximations of such systems for large graphs typically remains limited to specific dynamics, or assumes cluster-free graphs for which standard approximations based on degrees and pairs are often reasonably accurate. Here, we propose a motif-based mean-field approximation that considers higher-order subgraph structures in large clustered graphs. Numerically, our equations agree with stochastic simulations where existing methods fail.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Cui, Kai ; KhudaBukhsh, Wasiur R. ; Koeppl, Heinz
Art des Eintrags: Bibliographie
Titel: Motif-based mean-field approximation of interacting particles on clustered networks
Sprache: Englisch
Publikationsjahr: April 2022
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review E
Jahrgang/Volume einer Zeitschrift: 105
(Heft-)Nummer: 4
DOI: 10.1103/PhysRevE.105.L042301
URL / URN: https://link.aps.org/doi/10.1103/PhysRevE.105.L042301
Zugehörige Links:
Kurzbeschreibung (Abstract):

Interacting particles on graphs are routinely used to study magnetic behavior in physics, disease spread in epidemiology, and opinion dynamics in social sciences. The literature on mean-field approximations of such systems for large graphs typically remains limited to specific dynamics, or assumes cluster-free graphs for which standard approximations based on degrees and pairs are often reasonably accurate. Here, we propose a motif-based mean-field approximation that considers higher-order subgraph structures in large clustered graphs. Numerically, our equations agree with stochastic simulations where existing methods fail.

Freie Schlagworte: Complex systems, Epidemic, Dynamical mean field theory, Mean field theory, emergenCITY, emergenCITY_KOM
ID-Nummer: Artikel-ID: L042301
Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 07 Sep 2022 08:49
Letzte Änderung: 16 Jan 2025 15:22
PPN: 49897944X
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen