TU Darmstadt / ULB / TUbiblio

Discrete-Time Mean Field Control with Environment States

Cui, K. ; Tahir, A. ; Sinzger, M. ; Koeppl, H. (2021)
Discrete-Time Mean Field Control with Environment States.
60th Conference on Decision and Control (CDC2021). virtual Conference (13.12.2021-15.12.2021)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Multi-agent reinforcement learning methods have shown remarkable potential in solving complex multi-agent problems but mostly lack theoretical guarantees. Recently, mean field control and mean field games have been established as a tractable solution for large-scale multi-agent problems with many agents. In this work, driven by a motivating scheduling problem, we consider a discrete-time mean field control model with common environment states. We rigorously establish approximate optimality as the number of agents grows in the finite agent case and find that a dynamic programming principle holds, resulting in the existence of an optimal stationary policy. As exact solutions are difficult in general due to the resulting continuous action space of the limiting mean field Markov decision process, we apply established deep reinforcement learning methods to solve the associated mean field control problem. The performance of the learned mean field control policy is compared to typical multi-agent reinforcement learning approaches and is found to converge to the mean field performance for sufficiently many agents, verifying the obtained theoretical results and reaching competitive solutions

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Cui, K. ; Tahir, A. ; Sinzger, M. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Discrete-Time Mean Field Control with Environment States
Sprache: Englisch
Publikationsjahr: 2021
Veranstaltungstitel: 60th Conference on Decision and Control (CDC2021)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 13.12.2021-15.12.2021
Zugehörige Links:
Kurzbeschreibung (Abstract):

Multi-agent reinforcement learning methods have shown remarkable potential in solving complex multi-agent problems but mostly lack theoretical guarantees. Recently, mean field control and mean field games have been established as a tractable solution for large-scale multi-agent problems with many agents. In this work, driven by a motivating scheduling problem, we consider a discrete-time mean field control model with common environment states. We rigorously establish approximate optimality as the number of agents grows in the finite agent case and find that a dynamic programming principle holds, resulting in the existence of an optimal stationary policy. As exact solutions are difficult in general due to the resulting continuous action space of the limiting mean field Markov decision process, we apply established deep reinforcement learning methods to solve the associated mean field control problem. The performance of the learned mean field control policy is compared to typical multi-agent reinforcement learning approaches and is found to converge to the mean field performance for sufficiently many agents, verifying the obtained theoretical results and reaching competitive solutions

Freie Schlagworte: reinforcement learning, machine learning, MARL, emergenCITY_KOM
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C3: Inhaltszentrische Sicht
Hinterlegungsdatum: 09 Aug 2021 07:05
Letzte Änderung: 20 Jan 2022 11:07
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen