TU Darmstadt / ULB / TUbiblio

An Unsupervised Approach for Graph-based Robust Clustering of Human Gait Signatures

Taştan, A. ; Muma, M. ; Zoubir, A. M. (2020)
An Unsupervised Approach for Graph-based Robust Clustering of Human Gait Signatures.
IEEE Radar Conference. virtual Conference (21.09.2020-25.09.2020)
doi: 10.1109/RadarConf2043947.2020.9266313
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Classification of gait abnormalities plays a key role in medical diagnosis, sports, physiotherapy and rehabilitation. We demonstrate the effectiveness of a new graph construction-based outlier detection method and and the applicability of a new parameter-free clustering approach on radar-based human gait signatures. Micro-Doppler radar-based human gait signatures of ten test subjects for five different gait types consisting of normal, simulated abnormal and assisted walks are clustered using five different clustering algorithms. The proposed algorithm outperforms existing methods both in cluster enumeration and partition and achieves an overall correct clustering rate of 92.8%. The developed method is promising for performing medical diagnosis in a robust unsupervised fashion.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Taştan, A. ; Muma, M. ; Zoubir, A. M.
Art des Eintrags: Bibliographie
Titel: An Unsupervised Approach for Graph-based Robust Clustering of Human Gait Signatures
Sprache: Englisch
Publikationsjahr: 4 Dezember 2020
Verlag: IEEE
Buchtitel: 2020 IEEE Radar Conference (RadarConf'20)
Veranstaltungstitel: IEEE Radar Conference
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 21.09.2020-25.09.2020
DOI: 10.1109/RadarConf2043947.2020.9266313
Kurzbeschreibung (Abstract):

Classification of gait abnormalities plays a key role in medical diagnosis, sports, physiotherapy and rehabilitation. We demonstrate the effectiveness of a new graph construction-based outlier detection method and and the applicability of a new parameter-free clustering approach on radar-based human gait signatures. Micro-Doppler radar-based human gait signatures of ten test subjects for five different gait types consisting of normal, simulated abnormal and assisted walks are clustered using five different clustering algorithms. The proposed algorithm outperforms existing methods both in cluster enumeration and partition and achieves an overall correct clustering rate of 92.8%. The developed method is promising for performing medical diagnosis in a robust unsupervised fashion.

Freie Schlagworte: emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
20 Fachbereich Informatik
20 Fachbereich Informatik > Sichere Mobile Netze
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
TU-Projekte: HMWK|III L6-519/03/05.001-(0016)|emergenCity TP Bock
Hinterlegungsdatum: 29 Sep 2020 07:38
Letzte Änderung: 02 Feb 2023 09:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen