TU Darmstadt / ULB / TUbiblio

A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme

Hansen, Ulf-Peter ; Rauh, Oliver ; Schroeder, Indra (2016)
A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme.
In: Channels, 10 (2)
doi: 10.1080/19336950.2015.1120391
Article, Bibliographie

Abstract

The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.

Item Type: Article
Erschienen: 2016
Creators: Hansen, Ulf-Peter ; Rauh, Oliver ; Schroeder, Indra
Type of entry: Bibliographie
Title: A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme
Language: English
Date: 2016
Publisher: Taylor & Francis
Journal or Publication Title: Channels
Volume of the journal: 10
Issue Number: 2
DOI: 10.1080/19336950.2015.1120391
URL / URN: https://doi.org/10.1080/19336950.2015.1120391
Abstract:

The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.

Divisions: 10 Department of Biology > Plant Membrane Biophyscis (20.12.23 renamed in Biology of Algae and Protozoa)
10 Department of Biology
Date Deposited: 23 Feb 2018 07:53
Last Modified: 23 Feb 2018 07:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details