TU Darmstadt / ULB / TUbiblio

Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes

Hartel, Andreas J. W. ; Ong, Peijie ; Schroeder, Indra ; Giese, M. Hunter ; Shekar, Siddharth ; Clarke, Oliver B. ; Zalk, Ran ; Marks, Andrew R. ; Hendrickson, Wayne A. ; Shepard, Kenneth L. (2018)
Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes.
In: Proceedings of the National Academy of Sciences, 115 (8)
doi: 10.1073/pnas.1712313115
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca2+-activated intracellular Ca2+-release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca2+ binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Hartel, Andreas J. W. ; Ong, Peijie ; Schroeder, Indra ; Giese, M. Hunter ; Shekar, Siddharth ; Clarke, Oliver B. ; Zalk, Ran ; Marks, Andrew R. ; Hendrickson, Wayne A. ; Shepard, Kenneth L.
Art des Eintrags: Bibliographie
Titel: Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes
Sprache: Englisch
Publikationsjahr: 2018
Verlag: National Academy of Sciences
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Proceedings of the National Academy of Sciences
Jahrgang/Volume einer Zeitschrift: 115
(Heft-)Nummer: 8
DOI: 10.1073/pnas.1712313115
URL / URN: https://doi.org/10.1073/pnas.1712313115
Kurzbeschreibung (Abstract):

Single-channel recordings are widely used to explore functional properties of ion channels. Typically, such recordings are performed at bandwidths of less than 10 kHz because of signal-to-noise considerations, limiting the temporal resolution available for studying fast gating dynamics to greater than 100 µs. Here we present experimental methods that directly integrate suspended lipid bilayers with high-bandwidth, low-noise transimpedance amplifiers based on complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) technology to achieve bandwidths in excess of 500 kHz and microsecond temporal resolution. We use this CMOS-integrated bilayer system to study the type 1 ryanodine receptor (RyR1), a Ca2+-activated intracellular Ca2+-release channel located on the sarcoplasmic reticulum. We are able to distinguish multiple closed states not evident with lower bandwidth recordings, suggesting the presence of an additional Ca2+ binding site, distinct from the site responsible for activation. An extended beta distribution analysis of our high-bandwidth data can be used to infer closed state flicker events as fast as 35 ns. These events are in the range of single-file ion translocations.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Plant Membrane Biophyscis (am 20.12.23 umbenannt in Biologie der Algen und Protozoen)
10 Fachbereich Biologie
Hinterlegungsdatum: 23 Feb 2018 07:42
Letzte Änderung: 23 Feb 2018 07:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen