Bayer, Thorsten J. M. ; Wachau, André ; Fuchs, Anne ; Deuermeier, Jonas ; Klein, Andreas (2012)
Atomic Layer Deposition of Al2O3 onto Sn-Doped In2O3: Absence of Self-Limited Adsorption during Initial Growth by Oxygen Diffusion from the Substrate and Band Offset Modification by Fermi Level Pinning in Al2O3.
In: Chemistry of Materials, 24 (23)
Article
Abstract
The growth of Al2O3 onto Sn-doped In2O3 (ITO) by atomic layer deposition (ALD) was studied in situ using X-ray photoelectron spectroscopy. Significant diffusion of oxygen from the substrate destroys the self-terminated monolayer adsorption of the metal precursor and results in a nominal initial growth per cycle of >1 nm. The observed mechanism precludes the preparation of monolayer thick Al2O3 films on ITO substrates by ALD. The energy band alignment at the ITO/Al2O3 interface is significantly different from that obtained when magnetron sputtering is used for the deposition of Al2O3 onto ITO [Gassenbauer et al., Phys. Chem. Chem. Phys.2009, 11, 3049]. The difference is attributed to a pinning of the Fermi level in the ALD-Al2O3 layer close to midgap, which is attributed to the incorporation of hydrogen in the film during growth.
Item Type: | Article |
---|---|
Erschienen: | 2012 |
Creators: | Bayer, Thorsten J. M. ; Wachau, André ; Fuchs, Anne ; Deuermeier, Jonas ; Klein, Andreas |
Type of entry: | Bibliographie |
Title: | Atomic Layer Deposition of Al2O3 onto Sn-Doped In2O3: Absence of Self-Limited Adsorption during Initial Growth by Oxygen Diffusion from the Substrate and Band Offset Modification by Fermi Level Pinning in Al2O3 |
Language: | English |
Date: | 19 November 2012 |
Journal or Publication Title: | Chemistry of Materials |
Volume of the journal: | 24 |
Issue Number: | 23 |
URL / URN: | http://dx.doi.org/10.1021/cm301732t |
Abstract: | The growth of Al2O3 onto Sn-doped In2O3 (ITO) by atomic layer deposition (ALD) was studied in situ using X-ray photoelectron spectroscopy. Significant diffusion of oxygen from the substrate destroys the self-terminated monolayer adsorption of the metal precursor and results in a nominal initial growth per cycle of >1 nm. The observed mechanism precludes the preparation of monolayer thick Al2O3 films on ITO substrates by ALD. The energy band alignment at the ITO/Al2O3 interface is significantly different from that obtained when magnetron sputtering is used for the deposition of Al2O3 onto ITO [Gassenbauer et al., Phys. Chem. Chem. Phys.2009, 11, 3049]. The difference is attributed to a pinning of the Fermi level in the ALD-Al2O3 layer close to midgap, which is attributed to the incorporation of hydrogen in the film during growth. |
Uncontrolled Keywords: | indium−tin oxide; AL2O3; atomic layer deposition; initial growth; interface properties; band alignment; hydrogen impurity |
Identification Number: | doi:10.1021/cm301732t |
Additional Information: | SFB 595 D3 |
Divisions: | 11 Department of Materials and Earth Sciences > Material Science > Surface Science DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties > Subproject D3: Function and fatigue of oxide electrodes in organic light emitting diodes 11 Department of Materials and Earth Sciences > Material Science DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue 11 Department of Materials and Earth Sciences Zentrale Einrichtungen DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres DFG-Collaborative Research Centres (incl. Transregio) |
Date Deposited: | 16 Aug 2013 12:15 |
Last Modified: | 25 Mar 2015 22:15 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |