TU Darmstadt / ULB / TUbiblio

Alkalicyamelurates, M3[C6N7O3].xH2O, M = Li, Na, K, Rb, Cs: UV-luminescent and thermally very stable ionic tri-s-triazine derivatives.

Horvath-Bordon, E. ; Kroke, E. ; Svoboda, I. ; Fuess, H. ; Riedel, R. ; Neeraj, S. ; Cheetham, A. K. (2004)
Alkalicyamelurates, M3[C6N7O3].xH2O, M = Li, Na, K, Rb, Cs: UV-luminescent and thermally very stable ionic tri-s-triazine derivatives.
In: Dalton Transactions, (22)
Article, Bibliographie

Abstract

Cyamelurates are salts of cyameluric acid, a derivative of tri-s-triazine (1,3,4,6,7,9-hexaazacyclo[3.3.3]azine or s-heptazine). These compounds are thermally very stable and possess interesting structural and optical properties. Only very few tri-s-triazine derivatives have been reported in the literature. The water-soluble alkali cyamelurates were extensively characterized using NMR, FTIR, Raman, UV, luminescence spectroscopy and elemental analysis. In addition, the single crystal X-ray structure analyses of the four hydrates of lithium, sodium, potassium and rubidium cyamelurates (Li(3)[C(6)N(7)O(3)].6H(2)O; Na(3)[C(6)N(7)O(3)].4.5H(2)O; K(3)[C(6)N(7)O(3)].3H(2)O; Rb(3)[C(6)N(7)O(3)].3H(2)O) are presented. Thermogravimetric analysis shows that the dehydrated salts start to decompose at temperatures above 500 degrees C. The thermal stability does not depend on the cations which is in contrast to the analogous s-triazine salts, i.e. the alkali cyanurates M(3)[C(3)N(3)O(3)]. The photoluminescence spectra indicate a very strong solid state UV-emission with maxima between 280 and 400 nm.

Item Type: Article
Erschienen: 2004
Creators: Horvath-Bordon, E. ; Kroke, E. ; Svoboda, I. ; Fuess, H. ; Riedel, R. ; Neeraj, S. ; Cheetham, A. K.
Type of entry: Bibliographie
Title: Alkalicyamelurates, M3[C6N7O3].xH2O, M = Li, Na, K, Rb, Cs: UV-luminescent and thermally very stable ionic tri-s-triazine derivatives.
Language: English
Date: 21 November 2004
Publisher: RSC Publishing
Journal or Publication Title: Dalton Transactions
Issue Number: 22
Abstract:

Cyamelurates are salts of cyameluric acid, a derivative of tri-s-triazine (1,3,4,6,7,9-hexaazacyclo[3.3.3]azine or s-heptazine). These compounds are thermally very stable and possess interesting structural and optical properties. Only very few tri-s-triazine derivatives have been reported in the literature. The water-soluble alkali cyamelurates were extensively characterized using NMR, FTIR, Raman, UV, luminescence spectroscopy and elemental analysis. In addition, the single crystal X-ray structure analyses of the four hydrates of lithium, sodium, potassium and rubidium cyamelurates (Li(3)[C(6)N(7)O(3)].6H(2)O; Na(3)[C(6)N(7)O(3)].4.5H(2)O; K(3)[C(6)N(7)O(3)].3H(2)O; Rb(3)[C(6)N(7)O(3)].3H(2)O) are presented. Thermogravimetric analysis shows that the dehydrated salts start to decompose at temperatures above 500 degrees C. The thermal stability does not depend on the cations which is in contrast to the analogous s-triazine salts, i.e. the alkali cyanurates M(3)[C(3)N(3)O(3)]. The photoluminescence spectra indicate a very strong solid state UV-emission with maxima between 280 and 400 nm.

Divisions: 11 Department of Materials and Earth Sciences > Material Science > Dispersive Solids
11 Department of Materials and Earth Sciences > Material Science > Structure Research
11 Department of Materials and Earth Sciences > Material Science
11 Department of Materials and Earth Sciences
Date Deposited: 23 Apr 2012 09:02
Last Modified: 05 Mar 2013 10:00
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details