Jo, Wook ; Granzow, Torsten ; Aulbach, Emil ; Rödel, Jürgen ; Damjanovic, Dragan (2009)
Origin of the large strain response in (K[sub 0.5]Na[sub 0.5])NbO[sub 3]-modified (Bi[sub 0.5]Na[sub 0.5])TiO[sub 3]–BaTiO[sub 3] lead-free piezoceramics.
In: Journal of Applied Physics, 105 (9)
Article
This is the latest version of this item.
Abstract
The mechanism of the giant unipolar strain recently observed in a lead-free piezoceramic, 0.92(Bi0.5Na0.5)TiO3−0.06BaTiO3−0.02(K0.5Na0.5)NbO3 [ S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel, Appl. Phys. Lett. 91, 112906 (2007) was investigated. The validity of the previously proposed mechanism that the high strain comes both from a significant volume change during the field-induced phase transition, from an antiferroelectric to a ferroelectric phase and the domain contribution from the induced ferroelectric phase was examined. Monitoring the volume changes from the simultaneously measured longitudinal and transverse strains on disk-shaped samples showed that the phase transition in this specific material does not involve any notable volume change, which indicates that there is little contribution from a volume change due to the phase transition to the total strain response. Temperature dependent hysteresis measurements on unpoled samples of a nearby ferroelectric composition, 0.93(Bi0.5Na0.5)TiO3−0.06BaTiO3−0.01(K0.5Na0.5)NbO3 demonstrated that the origin of the large strain is due to the presence of a nonpolar phase that brings the system back to its unpoled state once the applied electric field is removed, which leads to a large unipolar strain.
Item Type: | Article |
---|---|
Erschienen: | 2009 |
Creators: | Jo, Wook ; Granzow, Torsten ; Aulbach, Emil ; Rödel, Jürgen ; Damjanovic, Dragan |
Type of entry: | Bibliographie |
Title: | Origin of the large strain response in (K[sub 0.5]Na[sub 0.5])NbO[sub 3]-modified (Bi[sub 0.5]Na[sub 0.5])TiO[sub 3]–BaTiO[sub 3] lead-free piezoceramics |
Language: | English |
Date: | May 2009 |
Journal or Publication Title: | Journal of Applied Physics |
Volume of the journal: | 105 |
Issue Number: | 9 |
URL / URN: | http://dx.doi.org/10.1063/1.3121203 |
Abstract: | The mechanism of the giant unipolar strain recently observed in a lead-free piezoceramic, 0.92(Bi0.5Na0.5)TiO3−0.06BaTiO3−0.02(K0.5Na0.5)NbO3 [ S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel, Appl. Phys. Lett. 91, 112906 (2007) was investigated. The validity of the previously proposed mechanism that the high strain comes both from a significant volume change during the field-induced phase transition, from an antiferroelectric to a ferroelectric phase and the domain contribution from the induced ferroelectric phase was examined. Monitoring the volume changes from the simultaneously measured longitudinal and transverse strains on disk-shaped samples showed that the phase transition in this specific material does not involve any notable volume change, which indicates that there is little contribution from a volume change due to the phase transition to the total strain response. Temperature dependent hysteresis measurements on unpoled samples of a nearby ferroelectric composition, 0.93(Bi0.5Na0.5)TiO3−0.06BaTiO3−0.01(K0.5Na0.5)NbO3 demonstrated that the origin of the large strain is due to the presence of a nonpolar phase that brings the system back to its unpoled state once the applied electric field is removed, which leads to a large unipolar strain. |
Uncontrolled Keywords: | barium compounds, bismuth compounds, dielectric hysteresis, electric domains, ferroelectric materials, ferroelectric transitions, piezoceramics, potassium compounds, sodium compounds |
Identification Number: | doi:10.1063/1.3121203 |
Additional Information: | SFB 595 A1 |
Divisions: | 11 Department of Materials and Earth Sciences 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences > Material Science > Nonmetallic-Inorganic Materials DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis > Subproject A1: Manufacturing of ceramic, textured actuators with high strain DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue Zentrale Einrichtungen DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres DFG-Collaborative Research Centres (incl. Transregio) |
Date Deposited: | 15 Jun 2011 08:16 |
Last Modified: | 05 Mar 2013 09:48 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Available Versions of this Item
-
Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. (deposited 18 May 2011 15:20)
- Origin of the large strain response in (K[sub 0.5]Na[sub 0.5])NbO[sub 3]-modified (Bi[sub 0.5]Na[sub 0.5])TiO[sub 3]–BaTiO[sub 3] lead-free piezoceramics. (deposited 15 Jun 2011 08:16) [Currently Displayed]
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |