Iwamoto, Y. ; Völger, W. ; Kroke, E. ; Riedel, R. (2001):
Crystallization behavior of amorphous Si-C-N ceramics derived from organometallic precursors.
In: Journal of the American Ceramic Society, 84 (10), pp. 2170-2178. Wiley, [Article]
Abstract
The crystallization behavior of organometallic-precursor-derived amorphous Si-C-N ceramics was investigated under N2 atmosphere using X-ray diffractometry (XRD), transmission electron microscopy (TEM), and solid-state 29Si nuclear magnetic resonance (NMR) spectroscopy. Amorphous Si-C-N ceramics with a C/Si atomic ratio in the range of 0.34–1.13 were prepared using polycarbosilane-polysilazane blends, single-source polysilazanes, and single-source polysilylcarbodiimides. The XRD study indicated that the crystallization temperature of Si3N4 increased consistently with the C/Si atomic ratio and reached 1500°C at C/Si atomic ratios ranging from 0.53 to 1.13. This temperature was 300°C higher than that of the carbon-free amorphous Si-N material. In contrast, the SiC crystallization temperature showed no clear relation with the C/Si atomic ratio. The TEM and NMR analyses revealed that the crystallization of amorphous Si-C-N was governed by carbon content, chemical homogeneity, and molecular structure of the amorphous Si-C-N network
Item Type: | Article |
---|---|
Erschienen: | 2001 |
Creators: | Iwamoto, Y. ; Völger, W. ; Kroke, E. ; Riedel, R. |
Title: | Crystallization behavior of amorphous Si-C-N ceramics derived from organometallic precursors |
Language: | English |
Abstract: | The crystallization behavior of organometallic-precursor-derived amorphous Si-C-N ceramics was investigated under N2 atmosphere using X-ray diffractometry (XRD), transmission electron microscopy (TEM), and solid-state 29Si nuclear magnetic resonance (NMR) spectroscopy. Amorphous Si-C-N ceramics with a C/Si atomic ratio in the range of 0.34–1.13 were prepared using polycarbosilane-polysilazane blends, single-source polysilazanes, and single-source polysilylcarbodiimides. The XRD study indicated that the crystallization temperature of Si3N4 increased consistently with the C/Si atomic ratio and reached 1500°C at C/Si atomic ratios ranging from 0.53 to 1.13. This temperature was 300°C higher than that of the carbon-free amorphous Si-N material. In contrast, the SiC crystallization temperature showed no clear relation with the C/Si atomic ratio. The TEM and NMR analyses revealed that the crystallization of amorphous Si-C-N was governed by carbon content, chemical homogeneity, and molecular structure of the amorphous Si-C-N network |
Journal or Publication Title: | Journal of the American Ceramic Society |
Volume of the journal: | 84 |
Issue Number: | 10 |
Publisher: | Wiley |
Uncontrolled Keywords: | crystals/crystallization, synthesis, silicon carbonitride |
Divisions: | 11 Department of Materials and Earth Sciences 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences > Material Science > Dispersive Solids |
Date Deposited: | 19 Nov 2008 16:27 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |