TU Darmstadt / ULB / TUbiblio

Efficient Technology Mapping Methods for Robust Genetic Logic Circuits

Schwarz, Tobias (2024)
Efficient Technology Mapping Methods for Robust Genetic Logic Circuits.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00027024
Ph.D. Thesis, Primary publication, Publisher's Version

Abstract

In the field of synthetic biology, one of the aims of researchers is to control the flow of information in cells using genetic logic circuits. Similarly to digital electronic circuits, signals are divided into Boolean 0 and 1 values through the application of thresholds. Genetic building blocks are combined together to form logic gates that implement Boolean functions, which are in turn combined into genetic gate libraries. This modularization allows the application of design automation methods to construct genetic circuits and represents the basis for the field of genetic design automation. In analogy to electronic design automation, the process of mapping a functional specification to the target technology is called technology mapping.

Compared to electronics, genetic technology possesses characteristics that pose new challenges to technology mapping methods. Due to the use of substances as signal transmitters and the shared medium of the cell, each gate in the circuit is required to use individual genetic parts. This leads to heterogeneous transfer characteristics among the gates and requires optimizing the gate assignment to the circuit topology. Further, cells exhibit strong variability and undesired interactions among synthetic and natural parts, which have to be considered for constructing robust genetic circuits. Existing approaches in this developing field often adopt methods from electronic design automation and have the potential for further adaptation to the genetic domain.

In this work, technology mapping methods for the design of combinational genetic logic circuits are presented. While existing methods rely on circuit topologies defined by the user or synthesized using objective functions known from electronics, in this work the circuit topology is incorporated as an additional degree of freedom. The method is evaluated using a set of Boolean functions, which have previously been implemented in vivo. By enumerating structural variants, a maximum 11.3-fold and a mean 38% improvement in circuit performance can be achieved, as measured by a traditional circuit score, while keeping the number of used gates minimal. Efficient methods for optimizing the assignment of gates to the circuit are presented, which allow for the exploration of broad design spaces and compensate for the computational burden of elaborate models. Based on the functional hierarchy of genetic circuits and fundamental features of genetic gates, a simulated annealing heuristic and a branch-and-bound scheme featuring both a heuristic and an exact mode are devised. For finding exact solutions, the methods provide a 20-fold speedup compared to an exhaustive search. The heuristics achieve a 722-fold speedup while delivering near-optimal solutions with a worst-case deviation of -0.11%, outperforming an existing heuristic.

Additionally, robustness to the variability of cells is integrated into the technology mapping process as a design objective. To this end, the simulated annealing method is adapted to use a robustness-centric objective function, the E-Score and a heuristic approach to robustness is devised and integrated into the branch-and-bound scheme. Both approaches exhibit a good mapping efficiency, and their comparison highlights the increased robustness of designs optimized globally for the E-Score. Finally, the integration of a context-aware circuit model enables the finding of optimal designs, even if the circuit is subject to undesired interactions, i.e., crosstalk. By evaluating different crosstalk scenarios, it could be shown that specific non-orthogonalities can be tolerated in genetic gate libraries, provided that they are considered in the design process.

Item Type: Ph.D. Thesis
Erschienen: 2024
Creators: Schwarz, Tobias
Type of entry: Primary publication
Title: Efficient Technology Mapping Methods for Robust Genetic Logic Circuits
Language: English
Referees: Hochberger, Prof. Dr. Christian ; Riedel, Prof. Marc
Date: 10 May 2024
Place of Publication: Darmstadt
Collation: xii, 166 Seiten
Refereed: 12 April 2024
DOI: 10.26083/tuprints-00027024
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27024
Abstract:

In the field of synthetic biology, one of the aims of researchers is to control the flow of information in cells using genetic logic circuits. Similarly to digital electronic circuits, signals are divided into Boolean 0 and 1 values through the application of thresholds. Genetic building blocks are combined together to form logic gates that implement Boolean functions, which are in turn combined into genetic gate libraries. This modularization allows the application of design automation methods to construct genetic circuits and represents the basis for the field of genetic design automation. In analogy to electronic design automation, the process of mapping a functional specification to the target technology is called technology mapping.

Compared to electronics, genetic technology possesses characteristics that pose new challenges to technology mapping methods. Due to the use of substances as signal transmitters and the shared medium of the cell, each gate in the circuit is required to use individual genetic parts. This leads to heterogeneous transfer characteristics among the gates and requires optimizing the gate assignment to the circuit topology. Further, cells exhibit strong variability and undesired interactions among synthetic and natural parts, which have to be considered for constructing robust genetic circuits. Existing approaches in this developing field often adopt methods from electronic design automation and have the potential for further adaptation to the genetic domain.

In this work, technology mapping methods for the design of combinational genetic logic circuits are presented. While existing methods rely on circuit topologies defined by the user or synthesized using objective functions known from electronics, in this work the circuit topology is incorporated as an additional degree of freedom. The method is evaluated using a set of Boolean functions, which have previously been implemented in vivo. By enumerating structural variants, a maximum 11.3-fold and a mean 38% improvement in circuit performance can be achieved, as measured by a traditional circuit score, while keeping the number of used gates minimal. Efficient methods for optimizing the assignment of gates to the circuit are presented, which allow for the exploration of broad design spaces and compensate for the computational burden of elaborate models. Based on the functional hierarchy of genetic circuits and fundamental features of genetic gates, a simulated annealing heuristic and a branch-and-bound scheme featuring both a heuristic and an exact mode are devised. For finding exact solutions, the methods provide a 20-fold speedup compared to an exhaustive search. The heuristics achieve a 722-fold speedup while delivering near-optimal solutions with a worst-case deviation of -0.11%, outperforming an existing heuristic.

Additionally, robustness to the variability of cells is integrated into the technology mapping process as a design objective. To this end, the simulated annealing method is adapted to use a robustness-centric objective function, the E-Score and a heuristic approach to robustness is devised and integrated into the branch-and-bound scheme. Both approaches exhibit a good mapping efficiency, and their comparison highlights the increased robustness of designs optimized globally for the E-Score. Finally, the integration of a context-aware circuit model enables the finding of optimal designs, even if the circuit is subject to undesired interactions, i.e., crosstalk. By evaluating different crosstalk scenarios, it could be shown that specific non-orthogonalities can be tolerated in genetic gate libraries, provided that they are considered in the design process.

Alternative Abstract:
Alternative abstract Language

Ein Forschungsziel der Synthetischen Biologie ist die Konstruktion genetischer Logikschaltungen, die die Steuerung des Informationsflusses in biologischen Zellen ermöglichen. Analog zu elektronischen digitalen Schaltungen werden Schwellwerte auf Signale angewendet, um diese in boolesch 0 und 1 zu unterscheiden. Aus genetischen Bausteinen werden Logikgatter gebildet, die primitive boolesche Funktionen implementieren und in Gatterbibliotheken zusammengefasst werden. Diese Modularisierung ermöglicht die Anwendung von Methoden der Entwurfsautomatisierung, um genetische Logikschaltungen zu konstruieren und stellt die Basis für das Forschungsfeld der Genetic Design Automation dar. In Anlehnung an die Electronic Design Automation wird die Abbildung einer funktionalen Spezifikation auf die Zieltechnologie Technology Mapping genannt.

Im Vergleich zur Elektronik besitzt die genetische Technologie Eigenschaften, die neue Herausforderungen für Technology Mapping-Verfahren darstellen. So werden Stoffe als Signalträger verwendet, die nicht räumlich getrennt sind. Gatter in einer Schaltung müssen daher einzigartige Träger, und somit individuelle genetische Bausteine, verwenden. Daraus resultieren heterogene Transfer-Charakteristiken, die die Optimierung der Zuweisung von Gattern auf die Schaltungstopologie erforderlich machen. Weiterhin unterliegen Zellen einer starken Variabilität und unerwünschten Wechselwirkungen zwischen synthetischen und natürlichen Komponenten, die in der Konstruktion robuster Schaltungen berücksichtigt werden müssen. Oft übernehmen bestehende Ansätze in diesem dynamischen Forschungsfeld Methoden der Electronic Design Automation, die jedoch Potential für eine verbesserte Anpassung an die Problemstruktur genetischer Schaltungen bieten.

In dieser Arbeit werden Technology Mapping-Methoden für den Entwurf kombinatorischer genetischer Logikschaltungen präsentiert. Im Unterschied zu existierenden Methoden, die die Schaltungstopologie als Nutzereingabe erwarten oder diese mit Zielfunktionen aus dem Bereich der Elektronik synthetisieren, wird die Topologie als Freiheitsgrad im Technology Mapping aufgefasst. Die Methode wird Anhand eines Satzes boolescher Funktionen, für die bereits Schaltungen in vivo implementiert wurden, evaluiert. Durch die Enumeration struktureller Varianten kann die Entwurfsqualität gemessen in einer traditionellen Zielfunktion um bis zu 11.3-fach und im Durchschnitt um 38% verbessert werden. Dabei bleibt die Schaltungsgröße minimal. Weiterhin werden Methoden für die Optimierung der Gatterzuweisung vorgestellt, die durch ihre Effizienz die Erkundung breiter Entwurfsräume ermöglichen und den Aufwand für die Evaluation komplexer Modelle kompensieren. Basierend auf der funktionalen Hierarchie genetischer Logikschaltungen und fundamentalen Eigenschaften genetischer Gatter, wurden eine Simulated Annealing-Heuristik sowie eine Branch-and-Bound-Methode mit exaktem und heuristischem Modus entworfen. Letztere weist einen 20-fachen Speedup gegenüber erschöpfender Suche für das Finden der exakten Lösung auf. Die Heuristiken erreichen einen 722-fachen Speedup für das Erzeugen quasi-optimaler Lösungen mit einer maximalen Abweichung vom optimalen Zielfunktionswert von -0.11% und übertreffen damit eine existierende Heuristik.

Zusätzlich wurde Robustheit gegenüber der Variabilität von Zellen als Entwurfsziel in den Technology Mapping-Prozess integriert. Dafür wurde die Simulated Annealing-Heuristik an eine alternative Zielfunktion, den E-Score, angepasst und ein heuristischer Ansatz für Robustheit entworfen und in die Brach-and-Bound-Methode integriert. Beide Methoden weisen eine gute Mapping-Effizienz auf. Ihr Vergleich offenbart die Überlegenheit der globalen Optimierung für Robustheit durch den E-Score. Weiterhin wurde ein kontextsensitives Schaltungsmodell integriert, wodurch die Generierung optimaler Designs ermöglicht wird, selbst wenn die Schaltung unerwünschten Wechselwirkungen unterliegt. Die Evaluation unterschiedlicher Annahmen über das Übersprechen zwischen Gattern einer Bibliothek zeigt, dass gewisse Nichtorthogonalitäten in Gatterbibliotheken akzeptabel sind, wenn diese im Entwurfsprozess berücksichtigt werden.

German
Uncontrolled Keywords: Genetic Design Automation, Technology Mapping, Genetic Circuits, Branch-and-Bound, Simulated Annealing
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-270241
Classification DDC: 000 Generalities, computers, information > 004 Computer science
500 Science and mathematics > 570 Life sciences, biology
600 Technology, medicine, applied sciences > 621.3 Electrical engineering, electronics
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institute of Computer Engineering
18 Department of Electrical Engineering and Information Technology > Institute of Computer Engineering > Computer Systems Group
Date Deposited: 10 May 2024 09:12
Last Modified: 13 May 2024 06:03
PPN:
Referees: Hochberger, Prof. Dr. Christian ; Riedel, Prof. Marc
Refereed / Verteidigung / mdl. Prüfung: 12 April 2024
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details