TU Darmstadt / ULB / TUbiblio

Native llama Nanobody Library Panning Performed by Phage and Yeast Display Provides Binders Suitable for C-Reactive Protein Detection

Oloketuyi, Sandra ; Bernedo, Robert ; Christmann, Andreas ; Borkowska, Justyna ; Cazzaniga, Giulia ; Schuchmann, Horst Wilhelm ; Niedziółka-Jönsson, Joanna ; Szot-Karpińska, Katarzyna ; Kolmar, Harald ; Marco, Ario de (2022)
Native llama Nanobody Library Panning Performed by Phage and Yeast Display Provides Binders Suitable for C-Reactive Protein Detection.
In: Biosensors, 2022, 11 (12)
doi: 10.26083/tuprints-00020274
Article, Secondary publication, Publisher's Version

Abstract

C-reactive protein (CRP) is an inflammation biomarker that should be quantified accurately during infections and healing processes. Nanobodies are good candidates to replace conventional antibodies in immunodiagnostics due to their inexpensive production, simple engineering, and the possibility to obtain higher binder density on capture surfaces. Starting from the same pre-immune library, we compared the selection output resulting from two independent panning strategies, one exclusively exploiting the phage display and another in which a first round of phage display was followed by a second round of yeast display. There was a partial output convergence between the two methods, since two clones were identified using both panning protocols but the first provided several further different sequences, whereas the second favored the recovery of many copies of few clones. The isolated anti-CRP nanobodies had affinity in the low nanomolar range and were suitable for ELISA and immunoprecipitation. One of them was fused to SpyTag and exploited in combination with SpyCatcher as the immunocapture element to quantify CRP using electrochemical impedance spectroscopy. The sensitivity of the biosensor was calculated as low as 0.21 μg/mL.

Item Type: Article
Erschienen: 2022
Creators: Oloketuyi, Sandra ; Bernedo, Robert ; Christmann, Andreas ; Borkowska, Justyna ; Cazzaniga, Giulia ; Schuchmann, Horst Wilhelm ; Niedziółka-Jönsson, Joanna ; Szot-Karpińska, Katarzyna ; Kolmar, Harald ; Marco, Ario de
Type of entry: Secondary publication
Title: Native llama Nanobody Library Panning Performed by Phage and Yeast Display Provides Binders Suitable for C-Reactive Protein Detection
Language: English
Date: 2022
Year of primary publication: 2022
Publisher: MDPI
Journal or Publication Title: Biosensors
Volume of the journal: 11
Issue Number: 12
Collation: 14 Seiten
DOI: 10.26083/tuprints-00020274
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20274
Corresponding Links:
Origin: Secondary publication DeepGreen
Abstract:

C-reactive protein (CRP) is an inflammation biomarker that should be quantified accurately during infections and healing processes. Nanobodies are good candidates to replace conventional antibodies in immunodiagnostics due to their inexpensive production, simple engineering, and the possibility to obtain higher binder density on capture surfaces. Starting from the same pre-immune library, we compared the selection output resulting from two independent panning strategies, one exclusively exploiting the phage display and another in which a first round of phage display was followed by a second round of yeast display. There was a partial output convergence between the two methods, since two clones were identified using both panning protocols but the first provided several further different sequences, whereas the second favored the recovery of many copies of few clones. The isolated anti-CRP nanobodies had affinity in the low nanomolar range and were suitable for ELISA and immunoprecipitation. One of them was fused to SpyTag and exploited in combination with SpyCatcher as the immunocapture element to quantify CRP using electrochemical impedance spectroscopy. The sensitivity of the biosensor was calculated as low as 0.21 μg/mL.

Uncontrolled Keywords: phage display, yeast display, nanobodies, biopanning, CRP
Status: Publisher's Version
URN: urn:nbn:de:tuda-tuprints-202744
Classification DDC: 500 Science and mathematics > 540 Chemistry
500 Science and mathematics > 570 Life sciences, biology
Divisions: 07 Department of Chemistry
07 Department of Chemistry > Clemens-Schöpf-Institut > Fachgebiet Biochemie
Date Deposited: 29 Apr 2022 09:08
Last Modified: 02 May 2022 05:54
PPN:
Corresponding Links:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details