Kaufhold, Marc-André ; Bayer, Markus ; Hartung, Daniel ; Reuter, Christian (2021):
Design and Evaluation of Deep Learning Models for Real-Time Credibility Assessment in Twitter.
In: LNCS, 12895, In: Artificial Neural Networks and Machine Learning - ICANN 2021, pp. 396-408,
Springer, 30th International Conference on Artificial Neural Networks (ICANN 2021), Bratislava, Slovakia, 14.-17.09.2021, ISBN 978-3-030-86382-1,
DOI: 10.1007/978-3-030-86383-8_32,
[Conference or Workshop Item]
Item Type: | Conference or Workshop Item |
---|---|
Erschienen: | 2021 |
Creators: | Kaufhold, Marc-André ; Bayer, Markus ; Hartung, Daniel ; Reuter, Christian |
Title: | Design and Evaluation of Deep Learning Models for Real-Time Credibility Assessment in Twitter |
Language: | English |
Book Title: | Artificial Neural Networks and Machine Learning - ICANN 2021 |
Series: | LNCS |
Series Volume: | 12895 |
Publisher: | Springer |
ISBN: | 978-3-030-86382-1 |
Divisions: | 20 Department of Computer Science 20 Department of Computer Science > Science and Technology for Peace and Security (PEASEC) Forschungsfelder Forschungsfelder > Information and Intelligence Forschungsfelder > Information and Intelligence > Cybersecurity & Privacy |
Event Title: | 30th International Conference on Artificial Neural Networks (ICANN 2021) |
Event Location: | Bratislava, Slovakia |
Event Dates: | 14.-17.09.2021 |
Date Deposited: | 18 Nov 2021 08:27 |
DOI: | 10.1007/978-3-030-86383-8_32 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |