TU Darmstadt / ULB / TUbiblio

J3R: Joint Multi-task Learning of Ratings and Review Summaries for Explainable Recommendation

P. V. S., Avinesh ; Ren, Yongli ; Meyer, Christian M. ; Chan, Jeffrey ; Bao, Zhifeng ; Sanderson, Mark
ed.: Brefeld, U. (2019)
J3R: Joint Multi-task Learning of Ratings and Review Summaries for Explainable Recommendation.
The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2019). Würzburg, Germany (16.09.2019--20.09.2019)
doi: 10.1007/978-3-030-46133-1_21
Conference or Workshop Item, Bibliographie

This is the latest version of this item.

Item Type: Conference or Workshop Item
Erschienen: 2019
Editors: Brefeld, U.
Creators: P. V. S., Avinesh ; Ren, Yongli ; Meyer, Christian M. ; Chan, Jeffrey ; Bao, Zhifeng ; Sanderson, Mark
Type of entry: Bibliographie
Title: J3R: Joint Multi-task Learning of Ratings and Review Summaries for Explainable Recommendation
Language: English
Date: 6 August 2019
Place of Publication: Cham, Switzerland
Publisher: Springer
Book Title: Proceedings of The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2019)
Series: Lecture Notes in Computer Science
Series Volume: 11908
Event Title: The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2019)
Event Location: Würzburg, Germany
Event Dates: 16.09.2019--20.09.2019
DOI: 10.1007/978-3-030-46133-1_21
URL / URN: https://public.ukp.informatik.tu-darmstadt.de/UKP_Webpage/pu...
Divisions: 20 Department of Computer Science
20 Department of Computer Science > Ubiquitous Knowledge Processing
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Research Training Group 1994 Adaptive Preparation of Information from Heterogeneous Sources
Date Deposited: 13 Aug 2019 13:52
Last Modified: 19 Aug 2021 10:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Available Versions of this Item

Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details