Davi, Lucas ; Dmitrienko, Alexandra ; Egele, Manuel ; Fischer, Thomas ; Holz, Thorsten ; Hund, Ralf ; Nürnberger, Stefan ; Sadeghi, Ahmad-Reza (2011):
POSTER: Control-Flow Integrity for Smartphones.
In: 18th ACM Conference on Computer and Communications Security (CCS'11),
ACM, [Conference or Workshop Item]
Abstract
Despite extensive research over the last two decades, runtime attacks on software are still prevalent. Recently, smartphones, of which millions are in use today, have become an attractive target for adversaries. However, existing solutions are either ad-hoc or limited in their effectiveness.
In this poster, we present a general countermeasure against runtime attacks on smartphone platforms. Our approach makes use of control-flow integrity (CFI), and tackles unique challenges of the ARM architecture and smartphone platforms. Our framework and implementation is efficient, since it requires no access to source code, performs CFI enforcement on-the-fly during runtime, and is compatible to memory randomization and code signing/encryption. We chose Apple iPhone for our reference implementation, because it has become an attractive target for runtime attacks. Our performance evaluation on a real iOS device demonstrates that our implementation does not induce any notable overhead when applied to popular iOS applications.
Item Type: | Conference or Workshop Item |
---|---|
Erschienen: | 2011 |
Creators: | Davi, Lucas ; Dmitrienko, Alexandra ; Egele, Manuel ; Fischer, Thomas ; Holz, Thorsten ; Hund, Ralf ; Nürnberger, Stefan ; Sadeghi, Ahmad-Reza |
Title: | POSTER: Control-Flow Integrity for Smartphones |
Language: | German |
Abstract: | Despite extensive research over the last two decades, runtime attacks on software are still prevalent. Recently, smartphones, of which millions are in use today, have become an attractive target for adversaries. However, existing solutions are either ad-hoc or limited in their effectiveness. In this poster, we present a general countermeasure against runtime attacks on smartphone platforms. Our approach makes use of control-flow integrity (CFI), and tackles unique challenges of the ARM architecture and smartphone platforms. Our framework and implementation is efficient, since it requires no access to source code, performs CFI enforcement on-the-fly during runtime, and is compatible to memory randomization and code signing/encryption. We chose Apple iPhone for our reference implementation, because it has become an attractive target for runtime attacks. Our performance evaluation on a real iOS device demonstrates that our implementation does not induce any notable overhead when applied to popular iOS applications. |
Book Title: | 18th ACM Conference on Computer and Communications Security (CCS'11) |
Publisher: | ACM |
Uncontrolled Keywords: | Security |
Divisions: | 20 Department of Computer Science 20 Department of Computer Science > System Security Lab LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt |
Date Deposited: | 04 Aug 2016 10:13 |
Identification Number: | TUD-CS-2011-0210 |
Corresponding Links: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |