TU Darmstadt / ULB / TUbiblio

Readactor: Practical Code Randomization Resilient to Memory Disclosure

Crane, Stephen ; Liebchen, Christopher ; Homescu, Andrei ; Davi, Lucas ; Larsen, Per ; Sadeghi, Ahmad-Reza ; Brunthaler, Stefan ; Franz, Michael (2015):
Readactor: Practical Code Randomization Resilient to Memory Disclosure.
In: 36th IEEE Symposium on Security and Privacy (Oakland),
[Conference or Workshop Item]

Abstract

Code-reuse attacks such as return-oriented programming (ROP) pose a severe threat to modern software. Designing practical and effective defenses against code-reuse attacks is highly challenging. One line of defense builds upon fine-grained code diversification to prevent the adversary from constructing a reliable code-reuse attack. However, all solutions proposed so far are either vulnerable to memory disclosure or are impractical for deployment on commodity systems. In this paper, we address the deficiencies of existing solutions and present the first practical, fine-grained code randomization defense, called Readactor, resilient to both static and dynamic ROP attacks. We distinguish between direct memory disclosure, where the attacker reads code pages, and indirect memory disclosure, where attackers use code pointers on data pages to infer the code layout without reading code pages. Unlike previous work, Readactor resists both types of memory disclosure. Moreover, our technique protects both statically and dynamically generated code. We use a new compiler-based code generation paradigm that uses hardware features provided by modern CPUs to enable execute-only memory and hide code pointers from leakage to the adversary. Finally, our extensive evaluation shows that our approach is practical---we protect the entire Google Chromium browser and its V8 JIT compiler---and efficient with an average SPEC CPU2006 performance overhead of only 6.4%.

Item Type: Conference or Workshop Item
Erschienen: 2015
Creators: Crane, Stephen ; Liebchen, Christopher ; Homescu, Andrei ; Davi, Lucas ; Larsen, Per ; Sadeghi, Ahmad-Reza ; Brunthaler, Stefan ; Franz, Michael
Title: Readactor: Practical Code Randomization Resilient to Memory Disclosure
Language: German
Abstract:

Code-reuse attacks such as return-oriented programming (ROP) pose a severe threat to modern software. Designing practical and effective defenses against code-reuse attacks is highly challenging. One line of defense builds upon fine-grained code diversification to prevent the adversary from constructing a reliable code-reuse attack. However, all solutions proposed so far are either vulnerable to memory disclosure or are impractical for deployment on commodity systems. In this paper, we address the deficiencies of existing solutions and present the first practical, fine-grained code randomization defense, called Readactor, resilient to both static and dynamic ROP attacks. We distinguish between direct memory disclosure, where the attacker reads code pages, and indirect memory disclosure, where attackers use code pointers on data pages to infer the code layout without reading code pages. Unlike previous work, Readactor resists both types of memory disclosure. Moreover, our technique protects both statically and dynamically generated code. We use a new compiler-based code generation paradigm that uses hardware features provided by modern CPUs to enable execute-only memory and hide code pointers from leakage to the adversary. Finally, our extensive evaluation shows that our approach is practical---we protect the entire Google Chromium browser and its V8 JIT compiler---and efficient with an average SPEC CPU2006 performance overhead of only 6.4%.

Book Title: 36th IEEE Symposium on Security and Privacy (Oakland)
Uncontrolled Keywords: ICRI-SC;Secure Things;Solutions;S2
Divisions: 20 Department of Computer Science
20 Department of Computer Science > System Security Lab
DFG-Collaborative Research Centres (incl. Transregio)
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
Profile Areas
Profile Areas > Cybersecurity (CYSEC)
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1119: CROSSING – Cryptography-Based Security Solutions: Enabling Trust in New and Next Generation Computing Environments
Date Deposited: 04 Aug 2016 10:13
Identification Number: TUD-CS-2015-0035
PPN:
Corresponding Links:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details