TU Darmstadt / ULB / TUbiblio

Temporal Analysis on Pairs of Classified Index Terms of Literature Databases

Ma, Zheng ; Weihe, Karsten (2014)
Temporal Analysis on Pairs of Classified Index Terms of Literature Databases.
Ilmenau, Germany
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Trend analysis and anomaly detection is gaining more and more interest since more than a decade. It gains focus in the new era of web2.0. As part of the project Knowledge Discovery in Scientific Literature, we developed new promising perspectives to detect trend and other interesting temporal patterns of index terms in the literature databases of educational domain. More specifically, we assign categories to index terms and investigate the index term pairs of special interest. We designed several measures to capture the characteristics of the evolution of individual index terms and pairs of index terms. Result shows our methodology is effective to find interesting temporal patterns, e.g. dependency relationship between index terms and helpful to detect trend.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Ma, Zheng ; Weihe, Karsten
Art des Eintrags: Bibliographie
Titel: Temporal Analysis on Pairs of Classified Index Terms of Literature Databases
Sprache: Englisch
Publikationsjahr: September 2014
Buchtitel: 10th International Conference on Webometrics, Informetrics, and Scientometrics (WIS) and the 15th COLLNET Meeting 2014
Veranstaltungsort: Ilmenau, Germany
Kurzbeschreibung (Abstract):

Trend analysis and anomaly detection is gaining more and more interest since more than a decade. It gains focus in the new era of web2.0. As part of the project Knowledge Discovery in Scientific Literature, we developed new promising perspectives to detect trend and other interesting temporal patterns of index terms in the literature databases of educational domain. More specifically, we assign categories to index terms and investigate the index term pairs of special interest. We designed several measures to capture the characteristics of the evolution of individual index terms and pairs of index terms. Result shows our methodology is effective to find interesting temporal patterns, e.g. dependency relationship between index terms and helpful to detect trend.

Freie Schlagworte: Knowledge Discovery in Scientific Literature;Temporal Analysis, Index Term, Co-occurrence, Scientific Literature, Trend Detection
ID-Nummer: TUD-CS-2014-0946
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 00:25
Letzte Änderung: 18 Sep 2018 16:00
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen